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1 Introduction
Consider the incompressible Navier–Stokes equations. If the velocity has a high
degree of regularity it may be represented efficiently via its Fourier series, which
maps the quadratic nonlinear source term to a binary convolution. Truncating
the Fourier series to length N , direct computation of the convolution requires
O(N2) operations, which can be reduced to O(N logN) by transforming back
to physical space. This technique, known as the pseudospectral method, is an
efficient method for performing simulations that offer high accuracy and is rel-
atively simple to implement. The technique is particularly suited for dealing
with incompressible or magnetohydrodynamic flows because the Poisson equa-
tion is diagonalized in Fourier space, and thus the solenoidal constraint is easily
enforced.

Pseudospectral simulations must be performed in a computational domain
consisting of a periodic box, which, prima facie, greatly reduces the applicability
of the method. Furthermore, dealiasing the convolution significantly increases
the required memory and computational complexity of the problem. The issue of
computational cost is partly addressed by making use of implicitly zero-padded
convolutions (section 2), whereas one may escape the periodic box by using a
penalization method (section 3) to implement complex geometries, while leaving
the computational domain untouched. Using implicitly dealiased convolutions
in a penalized domain allows one to perform simulations of fluids efficiently in
complex domains.

Turbulent systems may be characterized by the Reynolds number R, which
is the product of the characteristic length and velocity of the flow divided by the
kinematic viscosity of the fluid. Kolmogorov [27] theorized that the number of
degrees of freedom in a turbulent system depends on the the Reynolds number R
asO(R9/4). Massively parallel computers and modern software libraries allow us
to perform simulations with more than 1010 degrees of freedom [25]. Important
physical flows may exhibit even more complexity, such as blood flow (R ≈
3000), the flight of a Boeing 747 (R ≈ 109), and the Earth’s atmosphere (R ≈
1012), giving approximately 109, 1021, and 1028 degrees of freedom, respectively.
The massive size of such problems greatly exceeds the processing power of any
currently available computer, and may not be realizable without a revolution
in the manufacture of computer hardware [41]. Subgrid models of turbulence
allow one to circumvent this problem by approximating or simulating the small
scales. One such possibility is the method of pseudospectral reduction and the
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related multispectral method, as described in section 6.

2 Implicit Convolutions
The convolution of f = {fi} and g = {gi} is denoted f ∗ g, with

(1)(f ∗ g)i =
∑

j

fjgi−j .

Convolutions are important in such areas as computer vision [23], statistics [14],
signal processing [39], and differential equations [32, 33, 20].

For computations on real computers, the inputs f and g are of finite lengthN .
Computing equation (1) directly involves O

(
N2) operations. The convolution

theorem [26] allows one to compute discrete convolutions using a fast Fourier
transform (FFT) involving only O(N logN) operations and with greatly im-
proved accuracy over the direct method. The cyclic nature of the FFT intro-
duces spurious modes, known as aliases, which must be removed by dealiasing
the convolution [17, 33]. Two common dealiasing methods are zero padding and
phase-shift dealiasing, which either increases the effective problem size in each
dimension, or dealiases only a subset of the inputs. The method of implicit
zero-padding [9] reduces the memory load by re-using work memory when the
input is multi-dimensional, and has been implemented in the open-source soft-
ware library fftw++ [8], using OpenMP for multi-threading [36] and is applicable
to convolutions involving an arbitrary number of inputs [35].

The method of implicit dealiasing is particularly promising for distributed
memory computers using MPI, where the decreased memory footprint directly
translates to a reduction in communication cost [34]. A key step towards im-
plementing this method in a massively parallel environment is the creation of
a high-performance adaptive distributed transpose algorithm [11], where recur-
sive techniques were used to reduce latency when dealing with massively parallel
architectures. This method has been tested and shows promise on a variety of
different architectures, and I plan to extend to more general problem sizes.

Implicitly dealiased convolutions can be used on general input data. The
three most important data formats are

1. non-centred complex data,

2. centred complex data with Hermitian symmetry, as used in pseudospectral
simulations of nonlinear partial differential equations, and

3. non-centred real data, as used for image analysis, statistics, signal pro-
cessing, and statistics on real-valued data.

Implicit dealiasing has been implemented for cases 1 and 2. Case 3 remains to
be implemented, and offers significant benefits for many real-world problems,
particularly for high-dimensional data sets as found in the world of big data and
machine learning.
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3 Penalization method
The speed and precision of the pseudospectral method are available only for cer-
tain pairs of computational domains and basis functions, for example a periodic
box when using complex exponentials as basis functions. Using a Chebyshev
polynomial basis allows one to escape this periodicity, but one is still restricted to
rectangular domain. Another choice is to use harmonic functions tailored to the
computational domain (eg cylindrical or spherical), but these are not available
for general geometries, and determining them numerically can be as computa-
tionally difficult as performing the fluid simulation itself. For finite-volume or
finite-element methods, for example, it may be possible to deform the grid to
follow the boundary, but this is often expensive, leads to ill-conditioned linear
systems, and may not be possible for moving boundaries.

These difficulties may be circumvented by using the penalty method, which
leaves the computational domain relatively unconstrained and models the influ-
ence of the wall via a penalty term [3, 2], which can be used to implement a wide
variety of different geometries by simply specifying a characteristic function for
the wall domain. A convergence proof for the Navier–Stokes equations was given
in [1] for homogeneous Dirichlet boundary conditions. The method was imple-
mented with homogeneous Neumann boundary conditions in [24]. In [37], we
applied the penalty method to magnetohydrodynamic (MHD) flows and intro-
duced a technique to impose non-homogeneous Dirichlet boundary conditions
which do not correspond to solid-body rotation.

The extension of the penalty method to other types of boundary conditions
(for example, mixed, and non-homogeneous Neumann) is an exciting direction
of research, which will allow for simulations involving inflow/outflow boundary
conditions and other complex physics.

The accuracy of the penalty method is governed by the penalization parame-
ter η, with the accuracy scaling as O

(√
η × dx

)
where dx is the grid spacing [18].

Increasing the convergence with respect to the grid spacing would greatly im-
prove the effectiveness of this method. One possible way to achieve this is to
improve the regularity of the method by matching the gradient of the fluid and
the penalty field at the boundary, possibly via an iterative approach. For incom-
pressible and MHD flows, the added restriction that the fields be divergence-free
greatly complicates matters. The method for finding solenoidal penalty fields
given in [37] may offer a method to overcome this difficulty.

The penalization parameter η imposes a time scale on the simulation which
may be much smaller than that of the fluid itself, requiring simulations to be
performed with very small time steps. Using implicit time-stepping techniques
removes this restriction but reduces the accuracy of the penalty method. An-
other option is to use exponential Runge-Kutta methods [6], which solve the
linear term exactly and has been shown to greatly reduce the cost of performing
simulations of shell models of turbulence. Exponential Runge-Kutta integrators
are interesting mathematical objects of their own right, and their generation
involves deep algebraic results if one desires more than third-order accuracy in
time [15, 16].
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4 Shell models of turbulence
Shell models are toy models for turbulent systems; they mimic the behaviour
of the Navier–Stokes or magnetohydrodynamic equations but lack the compu-
tational and analytic difficulties. They are useful for testing numerical meth-
ods [38], as well as theories of turbulent dynamics [4]. The DN, GOY [21],
and SABRA [31] models are examples of such systems. In [6], we used these
models to explore the dissipation wavenumber of highly turbulent systems with
numerical simulations at very high Reynolds number contrasted with theoretical
results. In [38], these models were used to test a numerical method which was
later applied to the 2D Navier–Stokes equations in [34].

Shell models of turbulence can also be used to explore other aspects of fluid
flow, such as the relation between intermittency and the conservation of helicity-
like quantities. Moreover, by sending the shell spacing to zero, one recovers a
dynamical system which can be studied analytically [34].

5 Self-organization and coherent structures in
turbulence

Turbulence is chaotic and irregular, but it is not purely random. The trail of
smoke rising from a flame is laminar close to the flame, but eventually becomes
unstable, forming various flow structures known as vortices, and structures of
this type have been the object of study for both the Navier–Stokes [22, 43]
and MHD [42] equations. The tendency for turbulent flows to self-organize
into long-lived coherent structures may allow for a deeper understanding of the
underlying dynamics. Moreover, the presence of large structures suggests that
the Kolmogorov estimate for the number of degrees of freedom may be overly
pessimistic.

One of my projects in this area has focused on self-organization on 2D decay-
ing turbulence, where an automated vortex census using high-resolution simu-
lations. Using an automated vortex detection allows for better statistics over a
wider range of parameters. In addition, I am interested in the self-organization
of MHD flows [37], which may important roles in, for example, the creation of
a reverse-field pinch for tokamak fusion reactors.

6 Subgrid Models
We do not have the ideal resources to perform full-resolution direct numerical
simulations (DNS); one performs simulations with the computer available, not
the one that one might want or wish to have at a later time. It is tempting to
simply perform simulations at low resolution, but this selectively removes the
dissipation range which may produce errors at all scales of the simulation.

In order to perform useful simulations, various subgrid models have been
proposed to approximate the effect of unresolved small scales, such as the k–ε
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model [30], large eddy simulations (LES) [5], and RANS-type models [19]. The
k–ε and LES models are phenomenological, and need to be tuned using DNS
data which may not be available for a particular physical situation. The RANS-
α model, on the other hand, dramatically modifies the dynamics at the small
scales, changing physically important features such as the dissipation wavelength
which may dramatically influence physical processes such as, for example, mix-
ing and combustion.

The above-mentioned subgrid models do not simulate the small scale modes
in the system, but replace their effect on the large scales with some type of
model. Since there is a very large number of small-scale modes, modelling all
of them is impossible, but it may be possible to perform simulations where
the small scales are approximated instead of removed [28]. The method of
spectral reduction [7, 12, 13] allows one to perform spectral simulations in which
Fourier bins of averaged Fourier modes are evolved in time. Following the work
on implicitly dealiased convolutions [9], the averaged nonlinear term has been
implemented efficiently using a modified convolution theorem [10].

The spectrally-reduced Navier–Stokes equations produce the correct
statistical-mechanical equipartition only when the bins are of equal size, which
has the unfortunate effect of requiring the same approximation filter to the
small and large scales. This can be averted by applying a hierarchy of differently
spectrally reduced grids which are synchronized via projection/prolongation op-
erators. This has been implemented for shell models of turbulence [38] and
the 2D incompressible Navier–Stokes equations with periodic boundary condi-
tions [34]. Multispectral reduction relies heavily on pseudospectral reduction,
and one outstanding issue is whether pseudospectral reduction modifies the time
scale of each grid. Application to 3D flows, and the application of more general
boundary conditions are pressing avenues of research in this area.

Another approach to reducing the number of degrees of freedom in simu-
lations is to take advantage of spatial inhomogeneity in both fully developed
turbulence systems [40] and when parts of the flow-field are quiescent, such as
in the case of a near-wall turbulence. When using uniform grids, one must
increase the resolution of the simulation everywhere in order to capture the
dynamics of the active region. If the active region is only a small portion of
the total flow, then it would be more efficient to refine the grid only where the
flow field requires it. For finite-volume or finite-element methods, this can be
accomplished via adaptive multi-resolution by refining the elements locally. For
spectral methods, this may be possible via a non-uniform FFT [29], or possibly
a FFT-based convolution method specifically designed for non-uniform input.
An important aspect of adaptive multi-resolution simulations is load balancing,
and it would be worth considering whether FFTs can be efficiently performed
on space-filling curves (eg the Hilbert curve or Z-curve).
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