
Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

Parallel Implicitly Dealiased Convolutions on Shared
Memory Architectures

Malcolm Roberts · John C. Bowman

Received: date / Accepted: date

Abstract Implicit dealiasing is a method for computing in-place linear convolu-
tions via fast Fourier transforms that decouples work memory from input data. It
offers easier memory management and, for long one-dimensional input sequences,
greater efficiency than conventional zero-padding. Furthermore, for convolutions of
multidimensional data, the segregation of data and work buffers can be exploited
to reduce memory usage and execution time. This is accomplished by processing
and discarding data as it is generated, allowing work memory to be reused, for
greater data locality and performance. A generalized multithreaded implementa-
tion of implicit dealiasing that accepts an arbitrary number of input and output
vectors is presented, along with an improved one-dimensional Hermitian convo-
lution that avoids the loop dependency inherent in previous work. An alternate
data format that can accommodate a Nyquist mode and enhance cache efficiency
is also proposed.

Keywords implicit dealiasing · zero padding · convolution · fast Fourier
transform · pseudospectral method · Hermitian symmetry · Nyquist mode ·
multithreading · parallelization · shared memory · correlation

Mathematics Subject Classification (2000) 65R99 · 65T50

1 Introduction

The convolution is an important operator in a wide variety of applications ranging
from statistics, signal processing, image processing, and the numerical approxima-
tion of solutions to nonlinear partial differential equations. The convolution of two

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Malcolm Roberts
Computer Modelling Group Ltd, 3710 33 Street NW, Calgary, Alberta, T2L 2M1 Canada.
E-mail: malcolm.i.w.roberts@gmail.com

John C. Bowman
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Al-
berta T6G 2G1, Canada. E-mail: bowman@ualberta.ca



2 Malcolm Roberts, John C. Bowman

{Fk}N−1
k=0 {0}N−1

k=0 {Gk}N−1
k=0 {0}N−1

k=0

{fj}2N−1
j=0 {gj}2N−1

j=0

{fjgj}2N−1
j=0

{(F ∗G)k}N−1
k=0

Figure 1 Computing a 1D convolution via explicit zero padding.

sequences {Fk}k∈Z and {Gk}k∈Z is
∑

p∈Z FpGk−p. In practical applications, the

inputs {Fk}m−1
k=0 and {Gk}m−1

k=0 are of finite length m, yielding a linear convolution

with components
∑k

p=0 FpGk−p for k = 0, . . . ,m− 1. Computing such a convolu-

tion directly requires O
(
m2
)

operations, and roundoff error is a significant problem
for large m. It is therefore preferable to make use of the convolution theorem, har-
nessing the power of the fast Fourier transform (FFT) to map the convolution to
a component-wise multiplication. This reduces the computational complexity of a
convolution to O(m logm) [6,7] while improving numerical accuracy [8].

Since the FFT considers the inputs to be periodic, the direct application of
the convolution theorem results in a circular convolution, due to the indices being
computed modulo m. Removing these extra aliases from the periodic convolution
to produce a linear convolution is called dealiasing.

We give a brief overview of the dealiasing requirements for different types of
convolutions in Section 2. The standard method for dealiasing FFT-based convo-
lutions is to pad the inputs with a sufficient number of zero values such that the
aliased contributions are all zero, as shown in Figure 1. In Section 3, we general-
ize the method of implicit dealiasing [4] to handle an arbitrary number of input
and output vectors, with a general spatial multiplication operator. This allows
implicit dealiasing to be efficiently applied to autocorrelations and pseudospectral
simulations of nonlinear partial differential equations (e.g. in hydrodynamics and
magnetohydrodynamics). We also discuss key technical improvements that allow
implicit dealiasing to be fully multithreaded. For an efficient in-place implement-
ation of the centered Hermitian convolution, it was necessary to unroll the outer
loop partially so that interacting wavenumbers can be simultaneously processed.
This loop unrolling offers another advantageous: it removes the loop interdepend-
ence that prevented Function conv in [4] from being fully parallelized. In Section 4
we demonstrate that multithreaded implicit dealiasing in dimensions greater than
one uses much less memory and is much faster than explicit dealiasing. The ac-
complishments of this work and future directions for research are summarized in
Section 5. Implicitly dealiased convolution routines are publicly available in the
open-source software library FFTW++ [5].

2 Dealiasing requirements for convolutions

To compute the standard linear convolution
∑k

p=0 FpGk−p for input with k ∈
{0, . . . ,m − 1}, the data is padded with m zeroes for a total FFT length of 2m.



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 3

We refer to these inputs as non-centered and the paddings as 1/2 padding. If the
input data is multidimensional with size m1 × . . . × md, then the data must be
zero padded to 2m1 × . . .× 2md, increasing the buffer size by a factor of 2d.

For pseudospectral simulations, it is convenient to shift the zero wavenumber
in the transformed data to the middle of the array. In this case, the inputs are
{Fk}m−1

k=−m+1 and {Gk}m−1
k=−m+1, which we refer to as centered, and their convolu-

tion has components
∑m−1

p=k−m+1 FpGk−p for k = −m+1, . . . ,m−1. Convolutions
on centered inputs require less padding than on non-centered inputs: data of length
2m− 1 needs to be padded only to length 3m− 2 (normally extended to 3m); this
is called 2/3 padding [10]. Explicit zero padding increases the d-dimensional buffer
size in this case by a factor of (3/2)d.

A binary convolution can be generalized to an n-ary operator ∗(F1, . . . , Fn)k =∑
p1,...,pn

Fp1 · · ·Fpnδp1+...+pn,k, where δ is the Kronecker delta. For non-centered
inputs, an n-ary convolution could be computed as a sequence of binary convo-
lutions using 1/2 padding. However, for centered inputs with both negative and
positive frequencies, each binary convolution would have to be padded further
to eliminate all aliased interactions [11]. As a result, n-ary convolutions benefit
greatly from implicit dealiasing [4].

We consider a generalized convolution operation that takes A inputs and pro-
duces B outputs, where the multiplication performed in the transformed space can
be an arbitrary component-wise operation. In order to make use of 1/2 padding
or 2/3 padding (for noncentered or centered inputs, respectively), the multiplica-
tion operator must be quadratic; if the multiplication operator is of higher degree,
one must extend the padding to remove undesired aliases. To compute a convolu-
tion with A inputs and B outputs using the convolution theorem, one performs A
backward FFTs to transform the inputs, applies the appropriate multiplication op-
eration on the transformed data, and then performs B forward FFTs to produce
the final outputs, for a total of A+B FFTs.

The choice of multiplication operator determines the type of convolution. Let
{fj} be the inverse Fourier transform of {Fk}. An autoconvolution can be com-
puted with just two transforms using A = B = 1 and the operation fj → f2

j , while
an autocorrelation would use fj → fjfj , where fj denotes the complex conjugate
of fj . For the standard binary convolution, there are two inputs and one output,
and the multiplication operation is (fj , gj)→ fjgj .

The nonlinear advective term of the 2D incompressible Navier–Stokes vorti-
city equation can be computed with the operation (ux, uy, ∂ω/∂x, ∂ω/∂y) →
(ux∂ω/∂x+ uy∂ω/∂y), where u = (ux, uy) is the 2D velocity and ω = ẑ ·∇ × u
is the z-component of the vorticity; this requires a total of five FFTs (A = 4
and B = 1). As shown in Appendix A, it is possible to reduce the FFT count
for this case to four, with A = B = 2. Similarly, in three dimensions, Basdevant
[2] showed that the number of FFTs can be reduced from nine to eight, with
A = 3 and B = 5. For 3D magnetohydrodynamic (MHD) flows the operation is
(u,ω,B, j)→ (u× ω + j ×B,u×B), where u is the velocity, ω =∇× u is the
vorticity, B is the magnetic field, and j is the current density (A = 12, B = 6)
[12]. For the Navier–Stokes and MHD equations, the operation is quadratic and the
convolution is binary (n = 2), with a padding ratio of 2/3 (since the Fourier modes
are symmetric about the origin). In these pseudospectral applications, the phys-



4 Malcolm Roberts, John C. Bowman

ical space quantities are real valued: one can therefore use real-to-complex Fourier
transforms, which are about twice as efficient as their complex counterparts.

3 One-dimensional implicitly dealiased convolutions

Implicit padding allows one to dealias convolutions without having to write, read,
and multiply by explicit zero values. This is accomplished by implicitly incorpor-
ating the zero values into the top level of a decimated-in-frequency FFT. The
extra memory previously used for padding now appears as a decoupled work buf-
fer. One-dimensional implicitly dealiased convolutions therefore have the same
memory requirements as explicitly padded convolutions. Although in one dimen-
sion implicit padding is only slightly more efficient than explicit zero padding on
a single thread, it still has the advantage of not requiring the copying of user data
to a separate enlarged zero-padded buffer before performing the FFT. We now de-
scribe the optimized 1D building blocks that will be used in Section 4 to construct
higher-dimensional implicitly dealiased convolutions that are much more efficient
and compact than their explicit counterparts.

3.1 Complex convolution

Dealiasing the standard convolution
∑k

p=0 FpGk−p for k = 0, . . . ,m − 1 requires
extending the input data with zeros from length m to length N ≥ 2m − 1, thus
removing the beating of two modes with wavenumber m− 1 that would otherwise
contaminate mode N = 0 modN . One generally chooses N = 2m so that N has
a large number of prime factors, resulting in improved FFT performance.

The backward Fourier transform {fj}N−1
j=0 of the zero-padded input vector

{Fk}N−1
k=0 has components fj =

∑N−1
k=0 ζjkN Fk, where ζN = exp (2πi/N) denotes the

N th root of unity. The divide-and-conquer strategy of the fast Fourier transform
is based on the property ζrN = ζN/r. Since Fk = 0 for k ≥ m, we can compute the

even- and odd-indexed terms of {fj}N−1
j=0 as separate subtransforms:

f2` =

m−1∑
k=0

ζ2`k2m Fk =

m−1∑
k=0

ζ`km Fk, f2`+1 =

m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζk2mFk, (1)

where ` = 0, . . . ,m − 1. That is, {fj}N−1
j=0 can be computed with two Fourier

transforms of length m depending on the input data {Fk}m−1
k=0 , with the even-

indexed and odd-indexed parts of the output stored separately. Equation (1) has
a (slightly improved) computational complexity of O(N logm), while avoiding the
outermost bit reversal stage and the inconvenience of explicitly appending m extra
zero values to the input data. The (scaled) inverse of Eq. (1) is given by the forward
transform

2mFk =

2m−1∑
j=0

ζ−kj
2m fj =

m−1∑
`=0

ζ−k2`
2m f2` +

m−1∑
`=0

ζ
−k(2`+1)
2m f2`+1

=

m−1∑
`=0

ζ−k`
m f2` + ζ−k

2m

m−1∑
`=0

ζ−k`
m f2`+1, k = 0, . . . ,m− 1, (2)



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 5

{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{(F ∗G)k}m−1
k=0

Figure 2 Computing a 1D convolution via implicit dealiasing.

again using two Fourier transforms of length m. Equations (1) and (2) can be
combined to compute a dealiased binary convolution of {Fk}m−1

k=0 and {Gk}m−1
k=0 ,

as shown in Figure 2 and implemented in pseudocode in Function cconv of Ref. [4].
For each input, two arrays of size m are used instead of one array of size 2m. This
distinction is the key to the improved efficiency and reduced storage requirements
of the higher-dimensional implicit convolutions described in Section 4. In the 1D
complex case, each of the six complex Fourier subtransforms of size m can be
done out of place. Since implicit dealiasing does not compute the entire inverse
Fourier transformed image at once, we included in our implementation a facility
for determining the spatial coordinates of each point as it is processed. This can
be used for generating an image in x space of the inverse transformed data.

As in our previous work [4], we calculate the ζkN factors with a single complex
multiply, using two short pre-computed tables Ha = ζasN and Lb = ζbN , where
k = as + b with s = b

√
mc, a = 0, 1, . . . , dm/se − 1, and b = 0, 1, . . . , s − 1.

Since these one-dimensional tables occupy only O(
√
m) complex words, we do

not account for them in our storage estimates.

Out-of-place FFTs are often more efficient than their in-place counterparts,
and are more amenable to multithreading. It is not possible to make use of out-
of-place FFTs for explicitly dealiased convolutions without allocating additional
memory, but the situation is different with implicitly dealiased convolutions. For
example, in Function cconv of Ref. [4], all FFTs are out of place. Our general
function cconv in this work has A + B − 1 out-of-place FFTs and A + B + 1
in-place FFTs.

For A > B, the multiplication operator will free buffers that can be reused,
and it is possible to compute the convolution with all FFTs out of place. The
idea is that the input and work buffers can be processed separately, and, after
applying the multiplication operator, the data in the last of the A work buffers is
no longer needed. We make use of this buffer to implement out-of-place transforms.
In Function cconvA, we present an algorithm for an implicitly dealiased convolution
with A > B in which all 2A + 2B FFTs of length m are out of place. Likewise,
when A < B, Function cconvB shows that all but one of the 2A + 2B FFTs can
be performed out-of-place.

When A = 2 and B = 1, Function cconvA runs a few percent faster than
Function cconv from Ref. [4], thanks to improvements in the loop structure in the
pre- and post-processing stages. Thus, in one dimension, as seen in Figure 3(a),
implicit dealiasing on a single thread is now on average 12% faster than explicit
zero padding.



6 Malcolm Roberts, John C. Bowman

2

3

4

5

6

7

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi
ci
en
cy

512
2048
8192
32768
131072
524288

(b)

Figure 3 In-place 1D complex convolutions of length m: (a) comparison of computation times
for explicit and implicit dealiasing using T = 1 thread and T = 4 threads; (b) parallel efficiency
of implicit dealiasing versus number of threads. For efficiency m is chosen to be a power of
two.

3.1.1 Multithreaded Complex 1D Binary Convolutions

We parallelize Functions cconv, cconvA, and cconvB using OpenMP in our pre/post-
processing phases and in the multiplication operator, while taking advantage of the
multithreading built into FFTW. In Figure 3(a), we compare the speed of the implicit
and explicit algorithms using one and four threads. Using one thread, the implicit
method is on average 1.12 times faster than the explicit method, whereas using
four threads the performance improvement is a factor of 1.04 to 2.6 for m ≥ 8192.
The reason that the explicit version benefits from parellization at smaller m values
than implicit dealiasing is a simple consequence of the fact that the vector sizes
for explicit dealiasing are twice as large, due to the memory wasted on padding.
The error bars in the timing figures indicate the lower and upper one-sided stand-
ard deviations, as given in Ref. [4]. The number of samples varied from several
million for small data sizes to 20 for larger data sizes. In Figure 3(b), we observe
for m = 2048 to 524288 that the implicit method with four threads has a parallel
efficiency of 43% to 85%, giving a speedup of a factor of 1.7 to 3.4.

Both the FFTW-3.3.6 library and the convolution layer we built on top of it were
compiled with the GCC 5.3.1 20160406 compiler. Our library was compiled with
the optimizations -fopenmp -fomit-frame-pointer -fstrict-aliasing -msse2

-ffast-math -mfpmath=sse -march=native and executed on a 64-bit 3.4GHz In-
tel i7-2600K processor with an 8MB cache. Like the FFTW library, our algorithms
were vectorized with specialized SSE2 single-instruction multiple-data code.



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 7

3.2 Centered data formats

In this work, we extend the treatment of centered Fourier input data {F−m+1, . . . ,
Fm−1} for even m from Ref. [4], to all natural numbers m. We also implement an
optional new data layout {F−m, . . . , Fm−1}. In addition to handling convolutions
of Fourier transformed real-space data of even length, this extended format can
yield significant performance improvements, even if the additional mode F−m is
simply set to zero. We refer to {F−m+1, . . . , Fm−1} as the compact format and
{F−m, . . . , Fm−1} as the noncompact format. In particular, in the noncompact
case, a fully multithreaded implementation (Procedure fft1padBackward) is pos-
sible since it doesn’t have the loop dependency seen in Procedure fft0padBackward.1

The noncompact format is consistent with the output of a real-to-complex FFT.

Input: vectors {fa}A−1
a=0

Output: vectors {fb}B−1
b=0

for a = 0 to A− 1 do
ua ← fft−1(fa)

{ub}B−1
b=0 ← mult({ua}A−1

a=0 )
parallel for k = 0 to m− 1 do

for a = 0 to A− 1 do

fa[k]← ζk2mfa[k]

for a = 0 to A− 1 do
fa ← fft−1(fa)

{f0}B−1
b=0 ← mult({fa}A−1

a=0 )
f0 ← fft(f0)
u0 ← fft(u0)
parallel for k = 0 to m− 1 do

f0[k]← f0[k] + ζ−k
2mu0[k]

for b = 1 to B − 1 do
fb ← fft(fb)
u0 ← fft(ub)
parallel for k = 0 to m− 1 do

fb[k]← fb[k] + ζ−k
2mu0[k]

return {fb/(2m)}B−1
b=0

Function cconv returns the in-place
implicitly dealiased 1D convolution
of the complex vectors {fa}A−1

a=0

using the multiplication operator
mult : CA → CB . Each of the FFT
transforms is multithreaded, with
A+B−1 out-of-place and A+B+1
in-place FFTs.

Input: vectors {fa}A−1
a=0

Output: vectors {fb}B−1
b=0

for a = 0 to A− 1 do
ua ← fft−1(fa)

{ub}B−1
b=0 ← mult({ua}A−1

a=0 )
parallel for k = 0 to m− 1 do

for a = 0 to A− 1 do

fa[k]← ζk2mfa[k]

uA−1 ← fft−1(fA−1)
for a = A− 2 to 0 do

fa+1 ← fft−1(fa)

{fb}Bb=1 ← mult({fa}A−1
a=1 ∪{uA−1})

for b = 0 to B − 1 do
fb ← fft(fb+1)
uA−1 ← fft(ub)
parallel for k = 0 to m− 1 do

fb[k]← fb[k] + ζ−k
2muA−1[k]

return {fb/(2m)}B−1
b=0

Function cconvA returns the in-
place implicit dealiased 1D convolu-
tion of the complex vectors {fa}A−1

a=0

using the multiplication operator
mult : CA → CB , with A > B. All
2A+ 2B FFTs are out of place.

Although the compact format has slightly smaller storage requirements, on
some architectures with more than one (typically a power of two) memory banks,
stride resonances can significantly hurt performance if successive multidimensional

1 We correct here a sequencing error in the pseudocode for Procedure fft0padBackward in
Ref. [4]. Minor typographical errors also appeared on page 388 (0 . . . N should be 0 . . . N − 1),
page 391 (n should be N), and on p. 400 (2m1 − 1 should be 2mz − 1).



8 Malcolm Roberts, John C. Bowman

Input: vectors {fa}A−1
a=0

Output: vectors {fb}B−1
b=0

for a = A− 1 to 0 do
ua ← fft−1(fa)

parallel for k = 0 to m− 1 do
for a = A− 1 to 0 do

fa[k]← ζk2mfa[k]

for a = A− 1 to 0 do
fa+1 ← fft−1(fa)

{fb}B−1
b=1 ∪ {uB−1} ← mult({fa}Aa=1)

for b = 0 to B − 2 do
fb ← fft(fb+1)

fB−1 ← fft(uB−1)

{ub}B−1
b=0 ← mult({ua}A−1

a=0 )

u0 ← fft(u0)
parallel for k = 0 to m− 1 do

f0[k]← f0[k] + ζ−k
2mu0[k]

for b = 1 to B − 1 do
u0 ← fft(ub)
parallel for k = 0 to m− 1 do

fb[k]← fb[k] + ζ−k
2mu0[k]

return {fb/(2m)}B−1
b=0

Function cconvB returns the in-
place implicit dealiased 1D convolu-
tion of the complex vectors {fa}A−1

a=0

using the multiplication operator
mult : CA → CB , with B > A, with
2A + 2B − 1 out-of-place and 1 in-
place FFTs.

Input: vector f
Output: vector f, vector u
u[0]← f[m− 1]
for k = 1 to m− 1 do

A←
ζk3m

[
Re f[m−1+k]+

(
− 1

2
,−
√
3
2

)
Re f[0]

]
B← iζk3m

[
Im f[m− 1 + k] +(

− 1
2
,−
√
3

2

)
Im f[0]

]
C← f[m− 1 + k] + f[0]
f[0]← f[k]
f[k]← C
f[m− 1 + k]← A + B

u[k]← A− B

f[0, . . . ,m− 1]← fft−1(f[0, . . . ,m− 1])
u[m]← f[m− 1]
f[m− 1]← u[0]
f[m− 1, . . . , 2m− 2]←
fft−1(f[m− 1, . . . , 2m− 2])

u[0, . . . ,m− 1]← fft−1(u[0, . . . ,m− 1])

Procedure fft0padBackward(f,u) stores
the shuffled 3m-padded centered back-
ward Fourier transform values of a
compact-format vector of length 2m− 1
in f and an auxiliary vector u of length
m+ 1.

array accesses fall on the same memory bank. A similar effect can occur on modern
architectures due to cache associativity. It is therefore useful in the centered case
to allow the user to choose between the two data formats.

In the compact (noncompact) format, it is convenient to shift the Fourier origin
so that the k = 0 mode is indexed as array element m−1 (m). This shift, which can
be built into implicitly dealiased convolution algorithms at no extra cost, allows
for more convenient coding of wavenumber loops since the high-wavenumber cutoff
is naturally aligned with the array boundaries.

In the compact case, where N = 2m − 1, one needs to pad to N ≥ 3m − 2
to prevent modes with wavenumber m − 1 from beating together to contaminate
the mode with wavenumber −m+ 1. The ratio of the number of physical to total
modes, (2m − 1)/(3m − 2), is then asymptotic to 2/3 for large m [10]. With
explicit padding, for efficiency reasons one normally chooses the padded vector
length N to be a power of 2, with m = b(N + 2)/3c, while for implicit padding, it
is advantageous to choose the subtransform length m to be a power of 2. Moreover,
it is convenient to pad implicitly slightly beyond 3m− 2, to N = 3m, to support
a radix 3 subdivision at the outer level.

In the case of an even number 2m− 2 of spatial data points, one must use the
noncompact data format, with modes running from −m to m−1. When N = 3m,



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 9

the most negative (Nyquist) wavenumber −m can constructively beat with itself,
producing an alias in mode −m+ (−m) = −2m = m mod 3m, which is equivalent
to itself modulo 2m. To remove this alias we set the Nyquist mode to zero at the end
of the convolution, after accounting for its effects on the other modes. We note that
there are no aliases in {−m, . . . , 2m− 1} arising from the interaction of mode −m
with any of the other modes. As we will see in Section 3.2.1, those interactions
can (and in fact, should) be retained. We split the coefficient for k = −m equally
between F−m and its equivalent Fm (modulo 2m); in Section 3.2.1, we will see
that this is important for maintaining Hermitian symmetry and the corresponding
reality of the spatial field.

We now describe a noncompact implicitly dealiased centered Fourier transform;
the compact case is obtained by setting F−m = Fm = 0. Suppose then that
Fk = 0 for k > m. On decomposing j = (3`+ r) modN , where r ∈ {−1, 0, 1}, the
substitution k′ = m+ k allows us to write the backward transform as

f3`+r =
m∑

k=−m

ζ`km ζrk3mFk =

m−1∑
k′=0

ζ`k
′

m ζ
r(k′−m)
3m Fk′−m+

m∑
k=0

ζ`km ζrk3mFk =

m−1∑
k=0

ζ`kmwk,r,

(3)
where, on recombining Fm into F−m,

wk,r
.
=

{
F0 + Re ζ−r

3 F−m if k = 0,

ζrk3m(Fk + ζ−r
3 Fk−m) if 1 ≤ k ≤ m− 1.

(4)

Here
.
= is used to emphasize a definition. The forward transform is then

3mFk =
1∑

r=−1

ζ−rk
3m

m−1∑
`=0

ζ−`k
m f3`+r, k = −m+ 1, . . . ,m− 1, (5)

with the Nyquist mode F−m set to zero. The use of the remainder r = −1 in-

stead of r = 2 allows us to exploit the optimization ζ−k
3m = ζk3m in Eqs. (4)

and (5). The number of complex multiplies needed to evaluate Eq. (4) for r =
±1 can be reduced by computing the intermediate complex quantities Ak

.
=

ζk3m
(
ReFk + ζ−1

3 ReFk−m

)
and Bk

.
= iζk3m

(
ImFk + ζ−1

3 ImFk−m

)
, where ζ−1

3 =

(−1
2 ,−

√
3

2 ), so that for k > 0, wk,1 = Ak + Bk and wk,−1 = Ak −Bk. The res-
ulting noncompact backward transform is given in Procedure fft1padBackward;
its inverse is given in Procedure fft1padForward. The compact versions of these
routines are Procedure fft0padBackward and it inverse, Procedure fftpad0Forward
from Ref. [4].

3.2.1 Centered Hermitian Implicitly Padded 1D FFT

The Fourier transform of real data satisfies the Hermitian symmetry F−k = Fk.
This implies that the Fourier coefficient corresponding to k = 0 is real. There is a
further consequence of this symmetry when the length N of the discrete transform∑N−1

j=0 ζ−kj
N fj is even. Due to the periodicity of the discrete transform in N , the

highest frequency (Nyquist) mode must also be real: FN/2 = F−N/2 = FN/2.
Letting m = bN/2c+ 1, in the case where N is even, the 2m modes can therefore



10 Malcolm Roberts, John C. Bowman

Input: vector f
Output: vector f, vector u
A← f[0]
f[0]← f[m] + 2A
f[m]← f[m]− A
u[0]← f[m]
parallel for k = 1 to m− 1 do

A← ζk3m

[
Re f[m+ k] +

(
− 1

2
,−
√
3
2

)
Re f[k]

]
B← iζk3m

[
Im f[m+ k] +

(
− 1

2
,−
√
3

2

)
Im f[k]

]
f[k]← f[k] + f[m+ k]
f[m+ k]← A + B

u[k]← A− B

f[0, . . . ,m− 1]← fft−1(f[0, . . . ,m− 1])

f[m, . . . , 2m− 1]← fft−1(f[m, . . . , 2m− 1])

u[0, . . . ,m− 1]← fft−1(u[0, . . . ,m− 1])

Procedure fft1padBackward(f,u) stores the shuffled 3m-padded centered back-
ward Fourier transform values of a noncompact-format vector f of length 2m in
f and an auxiliary vector u of length m. The Fourier origin corresponds to array
position m.

Input: vector f, vector u
Output: vector f
f[0, . . . ,m− 1]← fft(f[0, . . . ,m− 1])
f[m, . . . , 2m− 1]← fft(f[m, . . . , 2m− 1])
u[0, . . . ,m− 1]← fft(u[0, . . . ,m− 1])
f[m]← f[0] + f[m] + u[0]
f[0]← 0
parallel for k = 1 to m− 1 do

A← f[k]

f[k]← A +
(
− 1

2
,
√
3
2

)
ζ−k
3mf[m+ k] +

(
− 1

2
,−
√
3
2

)
ζk3mu[k]

f[m+ k]← A + ζ−k
3mf[m+ k] + ζk3mu[k]

return f/(3m)

Procedure fft1padForward(f,u) returns the inverse of fft1padBackward(f,u),
with f[0] (the Nyquist mode for spatial data of even length) set to zero.

be indexed as {F−m+1, . . . , Fm} where F0 and Fm are real. An odd number 2m−1
of modes is indexed as {F−m+1, . . . , Fm−1}.

Hermitian symmetry can be used to reduce the computational complexity and
storage requirements of real-to-complex and complex-to-real Fourier transforms
by a factor of about two. A one-dimensional convolution of Hermitian data only
requires the data corresponding to non-negative wavenumbers. In the compact
case, with modes in {−m+1, . . . ,m−1}, the unsymmetrized physical data needs to
be padded with at leastm−1 zeros, just as in Section 3.2. Hermitian symmetry thus
necessitates padding the m non-negative wavenumbers with at least c

.
= bm/2c

zeros. The resulting 2/3 padding ratio (for even m) turns out to work particularly
well for developing implicitly dealiased centered Hermitian convolutions. As in the
centered case, we again choose the Fourier size to be N = 3m.



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 11

In the noncompact case, it is sufficient to retain the modes {0, . . . ,m}. One
could of course treat this as compact data of size m + 1, but in the frequently
occurring case where m = 2p this would require the computation of subtransforms
of length 2p + 1 instead of 2p. The most efficient available FFT algorithms are
typically those of size 2p.

Fortunately, the choice N = 3m also works for the noncompact case, provided
the entry for the Nyquist mode, which must be real, is zeroed at the end of the
convolution. For example, direct autoconvolution of the Hermitian data {(1, 0),
(2, 3), (4, 0)} yields {(59, 0), (20,−18), (3, 12)}. Withm = 3, the compact implicitly
dealiased convolution in Function conv produces identical results. For m = 2, the
noncompact version yields the correct values {(59, 0), (20,−18)} for the first m
elements only if the data (3, 12) for the Nyquist mode at k = m is taken into
account.

Let us now describe a noncompact implicitly padded Hermitian FFT; the com-
pact case can then be obtained by setting Fm = 0. Given that Fk = 0 for k > m,
the backward (complex-to-real) transform appears as Eq. (3), but now with

wk,r
.
=

{
F0 + Re ζ−r

3 Fm if k = 0,

ζrk3m
(
Fk + ζ−r

3 Fm−k

)
if 1 ≤ k ≤ m− 1.

(6)

We note for k > 0 that wk,r obeys the Hermitian symmetry wk,r = wm−k,r,
so that the Fourier transform

∑m−1
k=0 ζ`kmwk,r in Eq. (3) will indeed be real val-

ued. This allows us to build a backward implicitly dealiased centered Hermitian
transform using three complex-to-real Fourier transforms of the first c + 1 com-
ponents of wk,r (one for each r ∈ {−1, 0, 1}). The forward transform is given by
3mFk =

∑1
r=−1 ζ

−rk
3m

∑m−1
`=0 ζ−`k

m f3`+r for k = 0, . . . ,m − 1. Since f3`+r is real,
a real-to-complex transform can be used to compute the first c+ 1 frequencies of∑m−1

`=0 ζ−`k
m f3`+r; the remaining m − c − 1 frequencies are then computed using

Hermitian symmetry.

3.2.2 Multithreaded Hermitian 1D Binary Convolution

An in-place implicitly padded Hermitian convolution was previously described
in Function conv of Ref. [4] for the case of 2M inputs and one output, where
the multiplication operator was restricted to a dot product. However, that al-
gorithm cannot be efficiently applied to the autoconvolution case (with just one
input and one output), to pseudospectral simulations of 3D Navier–Stokes and
magnetohydrodynamic flows, or to the reduced-FFT scheme of Basdevant for 2D
turbulence (see Appendix A). Furthermore, interloop dependencies at the out-
ermost level prevent it from being multithreaded. Moreover, to facilitate an in-
place implementation, the transformed values for r = 1 were awkwardly stored
in reverse order in the upper half of the input vector, exploiting the quadratic
nature of the real-space multiplication operator. By unrolling the outer loop of
the in-place Hermitian 1D convolution, these deficiencies can be eliminated, res-
ulting in the fully multithreaded implementation in Function conv, generalized to
handle A inputs and B outputs and an arbitrary quadratic multiplication operator
mult : RA → RB .



12 Malcolm Roberts, John C. Bowman

Input: vectors {fa}A−1
a=0

Output: vectors {fb}B−1
b=0

for a = 0 to A− 1 do
pretransform(fa, uA−1)

f0a ← fft−1(f0a)

f1a ← fft−1(f1a)

ua ← fft−1(uA−1)

{f0b}B−1
b=0 ← mult({f0a}A−1

a=0 )

{f1b}B−1
b=0 ← mult({f1a}A−1

a=0 )

{ub}B−1
b=0 ← mult({ua}A−1

a=0 )

for b = 0 to B − 1 do
u0 ← fft(ub)

f0b ← fft(f0b)

f1b ← fft(f1b)

posttransform({f0b}ck=0 ∪
{f1b}ck=2c+2−m, f

1
b [1], u0)

return {fb/(3m)}B−1
b=0

Function conv returns the
implicitly dealiased 1D Her-
mitian convolution of length m
(m + 1) in the compact (non-
compact) format, using the
multiplication operator mult :
RA → RB , with 2A + 2B + 2
in-place and A+B − 2 out-of-
place FFTS.

0

1
. . .

k
. . .

c+ 1− k
. . .

c− 1
c
. . .

c+ k − 1
. . .

2c− k
. . .

2c− 1

r = 0

r = 1

(a)

0

1
. . .

k
. . .

c+ 1− k
. . .

c− 1
c
. . .

c+ k − 1
. . .

2c+ 1− k
. . .

2c− 1

2c

r = 0

r = 1

(b)

Figure 4 Loop unrolling for the Hermitian 1D con-
volution when (a) m = 2c and (b) m = 2c+ 1.

To multithread Procedure pretransform, we unroll two iterations of the loop
from Procedure build in Ref. [4] to read, process, and write the entries for the
elements indexed by k, m − k, c + 1 − k, and m − c − 1 + k simultaneously, for
k = 1, . . . , dc/2e, as shown in Figure 4. The implicitly padded transformed data
for remainders r = 0 and r = 1 is stored in the input data vector f , whereas the
data for remainder r = −1 is stored in the auxiliary vector u. In the frequently
encountered case where m = 2c, the values at position c − 1 and c overlap for
the remainders r = 0 and r = 1, whereas when m = 2c + 1 there is only one
overlapping value, at index c. In the noncompact case, any Nyquist inputs f [m]
and g[m] are properly accounted for, but on output f [m] is set to zero, for con-
sistency with Hermitian symmetry. A similar loop unrolling is used in a revised
implementation of the post-processing phase (see Procedure posttransform) to
allow for an arbitrary number of inputs A and outputs B.

In the pseudocode, the portions of the arrays corresponding to remainders
r = 0 and r = 1 are shown in Figure 4 and distinguished by the superscripts 0
and 1. Since these portions overlap when written to the array f , additional code
is required to save and restore the overlapping elements in the actual in-place
implementation.



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 13

In our general Function conv, only A + B − 2 of the 3A + 3B FFTs can be
performed out of place. When A = B this is the best that one can do: for example,
for an autoconvolution (A = B = 1), there is no free buffer available that would
enable the use of out-of-place transforms. Nevertheless when A > B or B > A the
optimized Function convA or convB, respectively, performs one FFT in place and
the remaining 3A + 3B − 1 FFTs out of place. Even with one thread, for A = 2
and B = 1, Functions conv and convA both have slightly better performance than
Function conv in Ref. [4], primarily due to the removal of loop interdependence.
Most importantly, conv, convA, and convB have fully parallelized pre- and post-
processing phases and use FFTW’s built-in parallel FFTs, which are typically much
more efficient when the transforms are out of place. The new routines accept either
compact or noncompact inputs and can therefore also benefit from the performance
advantage of the noncompact data format discussed in Section 3.2.

Input: vector f
Output: vector f, vector u
if noncompact then u[0]← f[0]− f[m]
else u[0]← f[0]
if m = 2c then F← f[c]
parallel for k = 1 to d do

a← ζ−k
3m

[
Re f[k] +

(
− 1

2
,
√

3
2

)
Re f[m− k]

]
b← −iζ−k

3m

[
Im f[k] +

(
1
2
,−
√
3

2

)
Im f[m− k]

]
A← ζk−c−1

3m

[
Re f[c+ 1− k] +

(
− 1

2
,
√
3

2

)
Re f[m− c− 1 + k]

]
B← −iζk−c−1

3m

[
Im f[c+ 1− k] +

(
1
2
,−
√
3

2

)
Im f[m− c− 1 + k]

]
u[k]← a− b
u[c+ 1− k]← A− B

f[k]← f[k] + f[m− k]

f[c+ 1− k]← f[c+ 1− k] + f[m− c− 1 + k]

f[m− c− 1 + k]← a + b

f[m− k]← A + B

if m = 2c then

u[c]← ReF +
√

3 ImF
f[c]← 2 ReF

Procedure pretransform(f,u) prepares the arrays to be Fourier transformed in
Function conv from an unpadded vector f of m (m + 1) values in the compact
(noncompact) format, and an auxiliary vector u of length c+1, where c = bm/2c
and d = b(c+ 1)/2c. The Fourier origin corresponds to array position 0.

In the case of a binary convolution with two input vectors and one output vec-
tor, a fully in-place convolution requires a total of nine Hermitian Fourier trans-
forms of size m, for an overall computational scaling of 9

2Km log2m operations,
where K = 34/9 [4], in agreement with the leading-order scaling of an explicitly
padded centered Hermitian convolution. In our new implementation, eight of the
nine Fourier transforms can now be performed out of place, using the same amount
of memory (6c+ 2 words in the compact case) as required to compute a centered
Hermitian convolution with explicit padding.



14 Malcolm Roberts, John C. Bowman

Input: vector f, real w, vector u
Output: vector f
if noncompact then f[m]← 0
if m = 2c and m > 2 then

a← f[1] + ζ−k
3mw + ζk3mu[1]

b← f[1] +
(
− 1

2
,−
√
3
2

)
ζk3mw +

(
− 1

2
,
√
3

2

)
ζ−k
3mu[k]

A← f[c] + ζk−c−1
3m f[m− 1] + ζc+1−k

3m u[c]
f[1]← a
f[c]← A
f[m− 1]← b

parallel for k = 2c+ 2−m to c− d do

a← f[k] + ζ−k
3mf[m− c− 1 + k] + ζk3mu[k]

b← f[k] +
(
− 1

2
,−
√
3

2

)
ζk3mf[m− c− 1 + k] +

(
− 1

2
,
√
3

2

)
ζ−k
3mu[k]

A← f[c+ 1− k] + ζk−c−1
3m f[m− k] + ζc+1−k

3m u[c+ 1− k]

B← f[c+ 1− k] +
(
− 1

2
,−
√
3
2

)
ζm−c−1−k
3m f[m− k] +

(
− 1

2
,
√
3
2

)
ζc+1−m−k
3m u[c+ 1− k]

f[k]← a
f[c+ 1− k]← A
f[m− c− 1 + k]← B
f[m− k]← b

if c+ 1 = 2d then
if d > 1 or m = 2c+ 1 then w = f[m− d]

a← f[d] + ζ−k
3mw + ζk3mu[d]

b← f[d] +
(
− 1

2
,−
√
3

2

)
ζk3mw +

(
− 1

2
,
√
3

2

)
ζ−k
3mu[d]

f[d]← a
f[m− d]← b

Procedure posttransform(f,w,u) is called by Function conv to combine the con-
tributions for r = 0, 1, and −1 into an implicitly-dealiased Hermitian convolu-
tion. The vector f has length m (m + 1) in the compact (noncompact) format,
and the auxiliary vector u has length c+1, where c = bm/2c and d = b(c+1)/2c.
When m = 2c, the scalar w contains the overlapped value for r = 1 and k = 1.

As seen in Fig. 5, the efficiency of the resulting implicitly dealiased centered
Hermitian convolution is comparable to an explicit implementation. For each al-
gorithm, we benchmark only those vector lengths that yield optimal performance.
The optimal values of m for the explicit version are b(2p + 2)/3c for natural num-
bers p, whereas for the implicit version the optimal values are powers of two, so
direct comparison of the methods using optimal problem sizes is not possible. In-
stead, we compare the two methods using a linear interpolation (with respect to
logm) of the execution time rescaled by the computational complexity of the al-
gorithm. With one thread, the implicit version runs between 5% and 23% faster
for m ≥ 2048; with four threads, the implicit version is between 12% and 105%
faster for m ≥ 65536, as shown in Fig. 5(a). We demonstrate the parallel efficiency
of the implicit routine in Fig. 5(b) using one, two, and four threads. For m ≥ 8192,
the parallel efficiency of the implicit method with four threads is between 45% and
68%, giving a speedup of a factor of 1.8 to 2.7.



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 15

Input: vectors {fa}A−1
a=0

Output: vectors {fb}B−1
b=0

for a = 0 to A− 1 do
pretransform(fa, uA−1)

ua ← fft−1(uA−1)

{ub}B−1
b=0 ← mult({ua}A−1

a=0 )

uA−1 ← fft−1(f0A−1)

for a = A− 2 to 0 do
f0a+1 ← fft−1(f0a)

{f0b}Bb=1 ← mult({f0a}A−1
a=1 ∪ {uA−1})

uA−1 ← fft−1(f1A−1)

for a = A− 2 to 0 do
f1a+1 ← fft−1(f1a)

{f1b}Bb=1 ← mult({f1a}A−1
a=1 ∪ {uA−1})

for b = 0 to B − 1 do
uA−1 ← fft(ub)

f0b ← fft(f0b+1)

f1b ← fft(f1b+1)

posttransform({f0b}ck=0 ∪
{f1b}ck=2c+2−m, f

1
b [1], uA−1)

return {fb/(3m)}B−1
b=0

Function convA returns the impli-
citly dealiased 1D Hermitian convo-
lution of lengthm (m+1) in the com-
pact (noncompact) format, for A >
B, with 1 in-place and 3A+ 3B − 1
out-of-place FFTs.

Input: vectors {fa}A−1
a=0

Output: vectors {fb}B−1
b=0

for a = A− 1 to 0 do
pretransform(fa, ua)

ua+1 ← fft−1(ua)

f0a+1 ← fft−1(f0a)

f1a+1 ← fft−1(f1a)

{f0b}B−1
b=1 ∪ {u0} ← mult({f0a}Aa=1)

for b = 0 to B − 2 do
f0b ← fft(f0b+1)

f0B−1 ← fft(u0)

{f1b}B−1
b=1 ∪ {u0} ← mult({f1a}Aa=1)

for b = 0 to B − 2 do
f1b ← fft(f1b+1)

f1B−1 ← fft(u0)

{ub}B−1
b=1 ∪ {u0} ← mult({ua}Aa=1})

u0 ← fft(u0)

posttransform({f0B−1}ck=0 ∪
{f1B−1}ck=2c+2−m, f

1
B−1[1], u0)

for b = 0 to B − 2 do
u0 ← fft(ub+1)

posttransform({f0b}ck=0 ∪
{f1b}ck=2c+2−m, f

1
b [1], u0)

return {fb/(3m)}B−1
b=0

Function convB returns the impli-
citly dealiased 1D Hermitian convo-
lution of lengthm (m+1) in the com-
pact (noncompact) format, for B >
A, with 1 in-place and 3A + 3B − 1
out-of-place FFTs.

4 Higher-dimensional convolutions

A d-dimensional convolution can be computed by performing an inverse FFT of
size m1 × . . . × md, applying the appropriate multiplication on the transformed
data, followed by an FFT back to the original space. Equivalently, one can per-
form

∏d
i=2mi inverse FFTs in the first dimension, followed by m1 convolutions

of dimension d − 1, and finally
∏d

i=2mi FFTs in the first dimension. The in-
nermost operation of a recursive multidimensional convolution thus reduces to a
1D convolution. Using this decomposition, one can reuse the work buffer for each
implicitly dealiased subconvolution, thereby reducing the total memory demand
relative to the explicit d-dimensional dealiasing requirement. For multithreaded
implicitly dealiased convolutions, the initial inverse FFT can be parallelized by
dividing the

∏d
i=2mi 1D FFTs and m1 subconvolutions between the T threads.

Since each implicitly dealiased subconvolution requires a work buffer, the total
memory requirement grows with the number of threads, but is still much lower



16 Malcolm Roberts, John C. Bowman

2

3

4

5

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi
ci
en
cy

512
2048
8192
32768
131072
524288

(b)

Figure 5 In-place 1D Hermitian convolutions of length m: (a) comparison of computation
times for explicit and implicit dealiasing using T = 1 thread and T = 4 threads; (b) parallel
efficiency of implicit dealiasing versus number of threads. For implicit convolutions, m is chosen
to be a power of two, while for explicit convolutions m = b(N + 2)/3c, where N is a power of
two.

than that required for explicit multidimensional convolutions when T � m1. When
T ≤ m1, we compute T subconvolutions at a time, using one inner thread per sub-
convolution to avoid over-subscription. Otherwise, if T > m1, we parallelize only
the inner subconvolution (over all T threads).

A single-threaded 2D implicitly 1/2-padded complex convolution is shown in
Figure 6. Each input buffer is implicitly padded and inverse Fourier transformed
in the x direction to produce the data shown in the square boxes. An impli-
citly padded inverse FFT is then performed in the y direction, column-by-column,
using a one-dimensional work buffer, to produce a single column of the Fourier
transformed image, depicted in yellow. The Fourier transformed columns of two
inputs F and G are then multiplied pointwise and stored back into the F column.
At this point, the y forward-padded FFT can then be performed, with the result
stored in the lower-half of the column, next to the previously processed data shown
in red. The process is repeated on the remaining columns, shifting and reusing the
work buffer. Once all the columns have been processed, a forward-padded FFT in
the x direction produces the final convolution in the left-hand half of the F buffer.

The reuse of subconvolution work memory allows the convolution to be com-
puted using less total memory: for 1/2 padded convolutions, the memory require-
ment per input is only about twice what would be required if dealiasing was out-
right ignored. This represents a memory savings of a factor of 2d−1 as compared
to explicit padding; for 2/3 padded convolutions, the memory savings factor is
(3/2)d−1. In addition to having reduced memory requirements, implicitly dealiased
multidimensional convolutions are significantly faster than their explicit counter-



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 17

parts, due to better data locality and cache management, along with the fact that
transforms of data known to be zero are automatically avoided.

FFT−1
x {F}

even

FFT−1
x {F}
odd

FFT−1
x {G}

even

FFT−1
x {G}
odd

Figure 6 The reuse of memory in a 2D complex implicitly dealiased convolution: after ap-
plying a 1D y convolution to the yellow column, the upper half is reused for the next column.

In the following subsections, we show that the algorithms developed in Section 3
can be used as building blocks to construct efficient implicitly padded higher-
dimensional convolutions.

4.1 Complex 2D convolution

Pseudocode for the implicitly padded transforms described by Eqs. (1)–(2) was
given in Ref. [4] as Procedures fftpadBackward and fftpadForward. In order to
compute a 2D convolution in parallel, the loops in these procedures were parallel-
ized, and parallel FFTs were used. Since the input and output of these routines
are multidimensional and the required FFT is one-dimensional, we use the FFTW

multiple 1D FFT routine. A multithreaded version of this routine is available in
the FFTW library, but we found that its parallel performance was sometimes lack-
ing. This was somewhat surprising, as there exists a simple algorithm to parallelize
such problems: if one wishes to perform M FFTs using T threads, one can simply
divide the M FFTs among the T threads, with any remaining r FFTs distributed
among the first r threads. At run time, we automatically test for the possibil-
ity that this decomposition is faster than FFTW’s parallel multiple FFT and use
whichever algorithm runs faster. This yielded a significant improvement in the
parallel performance of our convolutions.

As shown in Fig. 7(a), the resulting implicit 2D algorithm dramatically out-
performs the explicit version: using one thread, the mean speedup is a factor of
1.5, with a maximum speedup of 1.8. Using four threads, the mean speedup over
the parallel explicit version is approximately 2.6, with a maximum speedup factor
of 4.5. Fig. 7(b) shows the parallel efficiency of the 2D implicitly dealiased complex
convolution for a variety of problem sizes. The parallel efficiency for the implicit
routine ranges from 58% to 92% with four threads, for a speedup of 2.3 to 3.7 rel-
ative to one thread. The explicit routine has a parallel efficiency between 25% and



18 Malcolm Roberts, John C. Bowman

90%. Notably, the 2D explicit version has poor parallel performance for problem
sizes of 5122 and above using FFTW’s built-in multithreading.

Because the same temporary arrays u and v are used for each column of the
convolution, the memory requirement is 2Cmxmy +TCmy complex words using T
threads, where C = max{A,B}. Assuming that T < 2mx, this is far less than the
4Cmxmy complex words needed for an explicitly padded convolution.

5

10

15

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.6

0.7

0.8

0.9

1

E
ffi
ci
en
cy

1282

5122

20482

81922

(b)

Figure 7 In-place 2D complex convolutions of size m ×m: (a) comparison of computation
times for explicit and implicit dealiasing using T = 1 thread and T = 4 threads; (b) parallel
efficiency of implicit dealiasing versus number of threads. Here m is chosen to be a power of
two.

4.2 Centered Hermitian 2D convolution

In two dimensions, the Fourier-centered Hermitian symmetry appears as F−k,−` =
Fk,`. This symmetry is exploited in the centered Hermitian convolution algorithm
shown for the noncompact case in Function conv2. As with the 1D Hermitian
convolution, one has the option to use a compact or noncompact data format.
For the compact data format, the array has dimensions {−mx + 1, . . . ,mx − 1} ×
{0, . . . ,my−1}, whereas the noncompact version has dimensions {−mx, . . . ,mx−
1} × {0, . . . ,my}. One can also perform convolutions on data that is compact in
one direction and noncompact in the other. For serial computations, the best per-
formance typically is achieved when the x direction is compact and the y direction
is noncompact, so that each dimension is odd, to reduce cache associativity issues.
However, when running on more than one thread, the noncompact format should
be used in the x direction since Procedures fft1padBackward and fft1padForward
are fully multithreaded.



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 19

While the noncompact case requires slightly more memory than the compact
case, one advantage of the noncompact version is that the output of the Four-
ier transform of (2mx − 2) × (2my − 2) real values corresponds to the modes
{−mx, . . . ,mx − 1} × {0, . . . ,my}, where the Fourier origin has been shifted in
the x direction to the middle of the array. Moreover, one is able to use the extra
memory in the x direction for temporary storage, and having my + 1 variables in
the y direction avoids latency issues with cache associativity when my is a power
of two. These factors combine to give the noncompact format a performance ad-
vantage over the compact one: the noncompact case is typically slightly faster than
the compact case when using one thread and 25% faster on average when using
four threads.

Input: matrix {fa}A−1
a=0

Output: matrix {fb}B−1
b=0

for a = 0 to A− 1 do
parallel for j = 0 to my − 1
do

fftpadBackward(fTa [j],UT
a [j])

parallel for i = 0 to mx − 1 do

cconv({fa[i]}A−1
a=0 )

cconv({Ua[i]}A−1
a=0 )

for b = 0 to B − 1 do
parallel for j = 0 to my − 1
do

fftpadForward(fTb [j],UT
b [j])

return f

Function cconv2 returns the in-
place implicitly dealiased convolu-
tion of mx ×my matrices {fa}A−1

a=0

in {fb}B−1
b=0 , using A temporary

mx ×my matrices {Ua}A−1
a=0 .

Input: matrix {fa}A−1
a=0

Output: matrix {fb}B−1
b=0

for a = 0 to A− 1 do
parallel for j = 0 to my do

fft1padBackward(fTa [j],UT
a [j])

parallel for i = 0 to 2mx − 1 do

conv({fa[i]}A−1
a=0 )

parallel for i = 0 to mx − 1 do

conv({Ua[i]}A−1
a=0 )

for b = 0 to B − 1 do
parallel for j = 0 to my do

fft1padForward(fTb [j],UT
b [j])

return f

Function conv2 returns the in-place
implicitly dealiased centered Her-
mitian convolution of 2mx × (my +
1) matrices {fa}A−1

a=0 in the noncom-
pact data format, using A temporary
mx × (my + 1) matrices {Ua}A−1

a=0 .

The explicit version requires storage for 9Cmx(my+1)/2 complex words, where
C = max{A,B}. For the noncompact case, the implicit version using T threads
requires storage for 3Cmx(my + 1) + TC(bmy/2c + 1) complex words, which is
much less than the explicit case when mx ≥ T . As shown in Fig. 8(a), implicit
padding again yields a dramatic improvement in speed: the implicit version is on
average 1.36 times faster than the explicit version when using one thread, and
2.93 times faster than the explicit version when using four threads. In Fig. 8(b)
we show that the parallel efficiency of the implicit version is between 73% and
87% efficiency when using four threads, giving a speedup of a factor of 2.9 to 3.5.
As in the 2D complex case, the explicit version does not parallelize well for large
problem sizes.

4.3 Complex 3D convolution

The decoupling of the 2D work arrays in Function cconv2 facilitates the con-
struction of an efficient 3D implicit complex convolution, as described in Func-



20 Malcolm Roberts, John C. Bowman

10

20

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.8

0.9

1

E
ffi
ci
en
cy

642

2562

10242

40962

(b)

Figure 8 In-place 2D Hermitian convolutions of size 2m × (m + 1): (a) comparison of com-
putation times for explicit and implicit dealiasing using T = 1 thread and T = 4 threads; (b)
parallel efficiency of implicit dealiasing versus number of threads. For implicit convolutions, m
is chosen to be a power of two, while for explicit convolutions m = b(N + 2)/3c, where N is a
power of two.

tion cconv3. For A inputs with dimensions mx×my ×mz and B outputs, the ex-
plicit version requires 8Cmxmymz complex words, where C = max{A,B}. In con-
trast, the implicit version with T threads requires 2Cmxmymz+TCmymz+TCmz

complex words, approximately one quarter the storage requirements for the expli-
cit version when mx � T . As shown in Fig. 9(a), implicitly dealiased convolutions
are consequently much faster than their explicit counterparts. For a single thread,
the implicit version is on average 1.9 times as fast as the explicit version and
4.3 times faster on average when comparing execution times over four threads.
Fig. 9(b) shows the parallel efficiency of the implicit version, which is between
65% and 86% efficient when using four threads, giving a speedup of a factor of 2.6
to 3.4 over one thread. The explicit version has reasonable parallel efficiency for
small problem sizes, but this drops to roughly 25% on four threads for problem
size m ≥ 64.

4.4 Centered Hermitian 3D convolution

As with the 1D and 2D cases, we offer compact and noncompact versions of a 3D
Hermitian convolution, and users can choose formats that are compact/noncompact
in each direction separately. For serial computations, the best performance typic-
ally is achieved when the x and y directions are compact and the z direction is
noncompact, so that each dimension is odd, in the interest of cache associativity.
However, just as for 2D Hermitian convolutions, when running on more than one



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 21

thread, the x direction should be made noncompact to obtain optimal multith-
reading efficiency.

Input: {fa}A−1
a=0

Output: {fb}B−1
b=0

R← {0, . . . ,my−1}×{0, . . . ,mz−1}
for a = 0 to A− 1 do
parallel foreach (j, k) ∈ R do

fftpadBackward(fTa [k][j],UT
a [k][j])

parallel for i = 0 tomx − 1 do

cconv2({fa[i]}A−1
a=0 )

cconv2({Ua[i]}A−1
a=0 )

for b = 0 to B − 1 do
parallel foreach (j, k) ∈ R do

fftpadForward(fTb [k][j],UT
b [k][j])

return f

Function cconv3 returns the in-
place implicitly dealiased complex
convolution of mx ×my ×mz

matrices {fa}A−1
a=0 , using A tem-

porary mx ×my ×mz matrices
{Ua}A−1

a=0 .

Input: {fa}A−1
a=0

Output: {fb}B−1
b=0

R← {0, . . . , 2my} × {0, . . . ,mz}
for a = 0 to A− 1 do
parallel foreach (j, k) ∈ R do

fft1padBackward(fTa [k][j],UT
a [k][j])

parallel for i = 0 to 2mx − 1 do

conv2({fa[i]}A−1
a=0 )

parallel for i = 0 to mx − 1 do

conv2({Ua[i]}A−1
a=0 )

for b = 0 to B − 1 do
parallel foreach (j, k) ∈ R do

fft1padForward(fTb [k][j],UT
b [k][j])

return f

Function conv3 returns the in-place
implicitly dealiased Hermitian con-
volution of 2mx × 2my × (mz + 1)
matrices {fa}A−1

a=0 , using A temporary
mx×my×(mz+1) matrices {Ua}A−1

a=0 .

Pseudocode for the noncompact algorithm is given in Function conv3. The
noncompact version again offers a performance advantage over the compact ver-
sion, with the single-threaded compact and noncompact cases roughly equal in
execution time on a single thread, and the noncompact case offering between a 1%
and 10% performance advantage when parallelized over four threads.

In the noncompact format, the memory requirements for an explicit 3D Her-
mitian convolution with A inputs and B outputs is 27

2 Cmxmy(mz + 1) complex
words, whereas the implicit version requires only 6Cmxmy(mz +1)+TCmy(mz +
1) + TC(bmz/2c+ 1) complex words using T threads, where C = max{A,B}. We
did not implement a high-performance version of the explicit routine, so instead
we show the execution time of the implicit routine using one and four threads in
Fig. 10 (a). The parallel efficiency is shown in Fig. 10(b) and ranges between 65%
and 92%, which translates to a speedup of a factor of 2.6 to 3.7 using four threads
instead of one.

5 Concluding remarks

In this work we developed an efficient method for computing implicitly dealiased
convolutions parallelized over multiple threads. Methods were developed for non-
centered complex data and centered Hermitian-symmetric data with inputs in one,
two, and three dimensions. We showed how more general multiplication operators
can be supported, allowing for the efficient computation of autoconvolutions, cor-
relations (which are identical to convolutions for Hermitian-symmetric data), and
general nonlinearities in pseudospectral simulations.



22 Malcolm Roberts, John C. Bowman

10

20

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

101 102
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.7

0.8

0.9

1

E
ffi
ci
en
cy

643

1283

2563

5123

(b)

Figure 9 In-place 3D complex convolutions of size m×m×m: (a) comparison of computation
times for explicit and implicit dealiasing using T = 1 thread and T = 4 threads; (b) parallel
efficiency of implicit dealiasing versus number of threads. Here m is chosen to be a power of
two.

10

20

30

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

102
m

implicit T=1

implicit T=4

(a)

1 2 4
Number of cores

0.7

0.8

0.9

1

E
ffi
ci
en
cy

163

323

643

1283

2563

(b)

Figure 10 Implicitly dealiased in-place 3D Hermitian convolutions of size (2m− 1)× (2m−
1)× (m+ 1) for T = 1 and 2m× (2m− 1)× (m+ 1) for T = 4: (a) computation times using
T = 1 thread and T = 4 threads; (b) parallel efficiency versus number of threads. Here m is
chosen to be a power of two.



Parallel Implicitly Dealiased Convolutions on Shared Memory Architectures 23

Implicitly dealiased convolutions require less memory, are faster, and have
greater parallel efficiency than their explicitly dealiased counterparts. Specifically,
in d dimensions the memory savings for 1/2 padding is a factor of 2d−1; for 2/3
padding the savings factor is (3/2)d−1. The decoupling of temporary storage and
user data means that even in one dimension, users can save memory by not having
to copy their data to a separate buffer. In higher dimensions, this decoupling allows
one to reuse work memory. By avoiding the need to compute the entire Fourier im-
age at once, one obtains a dramatic reduction in total memory use. Moreover, the
resulting increased data locality significantly enhances performance, particularly
under parallelization. For example, a 3D implicitly dealiased complex convolution
runs about twice as fast as an explicitly dealiased convolution on one thread, and
over four times faster than the explicit method when both are parallelized over
four threads. For large problem sizes, an implicit complex convolution requires
one-half of the memory needed for a zero-padded convolution in two dimensions
and one-quarter in three dimensions. In the centered Hermitian case, the memory
use in two dimensions is 2/3 of the amount used for an explicit convolution and
4/9 of the corresponding storage requirement in three dimensions.

An upcoming paper will discuss the implementation of implicit dealiasing on
distributed-memory architectures, using hybrid MPI/OpenMP. Implicit dealiasing
of higher-dimensional convolutions over distributed memory benefits significantly
from the reduction of communication costs associated with the smaller memory
footprint. It also provides a natural way of overlapping communication (during
the transpose phase) with FFT computation.

In future work, we wish to develop specialized implicit convolutions of real
data for applications in signal processing, such as computing cross correlations and
autocorrelations of time series. We are also exploring novel applications of impli-
citly dealiased convolutions for computing sparse Fourier transforms [9], fractional
phase Fourier (chirp-z) transforms [1], and partial Fourier transforms [13,3].

A Basdevant formulation

A.1 3D incompressible Navier–Stokes equation

A naive implementation of the pseudospectral method for the 3D incompressible Navier–Stokes
equation,

∂ui

∂t
+
∂Dij

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2j
+ Fi, (7)

where Dij = uiuj , requires three backward FFTs to compute the velocity components from
their spectral representations and six forward FFTs of the independent components of the
symmetric tensor Dij , for a total of nine FFTs per integration stage. However Basdevant
[2] showed that this number can be reduced to eight, by subtracting the divergence of the
symmetric matrix Sij = δij trD/3 from both sides of Eq. (7):

∂ui

∂t
+
∂(Dij − Sij)

∂xj
= −∂(pδij + Sij)

∂xj
+ ν

∂2ui

∂x2j
+ Fi. (8)

Since the symmetric matrix Dij − Sij is traceless, it has just five independent components.
Together with the three backward FFTs required for the velocity components ui, we see that
only eight FFTs are required per integration stage. The effective pressure pδij + Sij is solved
as usual from the inverse Laplacian of the force minus the nonlinearity.



24 Malcolm Roberts, John C. Bowman

A.2 2D incompressible Navier–Stokes equation

The vorticity w = ∇×u evolves according to

∂w

∂t
+ (u·∇)w = (w·∇)u + ν∇2w +∇×F ,

where in two dimensions the vortex stretching term (w·∇)u vanishes and w is normal to the
plane of motion. For C2 velocity fields, the curl of the nonlinearity can be written in terms of

D̃ij
.
= Dij − Sij :

∂

∂x1

∂

∂xj
D̃2j −

∂

∂x2

∂

∂xj
D̃1j =

(
∂2

∂x21
− ∂2

∂x22

)
D12 +

∂

∂x1

∂

∂x2
(D22 −D11),

on recalling that S is diagonal and S11 = S22. The scalar vorticity ω thus evolves as

∂ω

∂t
+

(
∂2

∂x21
− ∂2

∂x22

)
(u1u2) +

∂2

∂x1∂x2

(
u22 − u21

)
= ν∇2ω +

∂F2

∂x1
− ∂F1

∂x2
.

Two backward FFTs are required to compute u1 and u2 in physical space, from which the
quantities u1u2 and u22 − u21 can be calculated and then transformed to Fourier space with
two additional forward FFTs. The advective term in 2D can thus be calculated with just four
FFTs.

References

1. Bailey, D.H., Swarztrauber, P.N.: The fractional Fourier transform and applications. SIAM
review 33(3), 389–404 (1991)

2. Basdevant, C.: Technical improvements for direct numerical simulation of homogeneous
three-dimensional turbulence. Journal of Computational Physics 50(2), 209–214 (1983)

3. Bowman, J.C., Ghoggali, Z.: The partial fast Fourier transform. Submitted to J. Sci.
Comput. (2017)

4. Bowman, J.C., Roberts, M.: Efficient dealiased convolutions without padding. SIAM J.
Sci. Comput. 33(1), 386–406 (2011)

5. Bowman, J.C., Roberts, M.: FFTW++: A fast Fourier transform C++ header class for the
FFTW3 library. http://fftwpp.sourceforge.net (May 6, 2010)

6. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier
series. Mathematics of Computation 19(90), 297–301 (1965)

7. Gauss, C.F.: Nachlass: Theoria interpolationis methodo nova tractata. In: Carl Friedrich
Gauss Werke, vol. 3, pp. 265–327. Königliche Gesellschaft der Wissenschaften, Göttingen
(1866)

8. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applic-
ations. Society for Industrial and Applied Mathematics, Philadelphia (1977)

9. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for sparse
Fourier transform. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 1183–1194. SIAM (2012)

10. Orszag, S.A.: Elimination of aliasing in finite-difference schemes by filtering high-
wavenumber components. Journal of the Atmospheric Sciences 28, 1074 (1971)

11. Roberts, M.: Multispectral reduction of two-dimensional turbulence. Ph.D. thesis, Univer-
sity of Alberta, Edmonton, AB, Canada (2011). http://www.math.ualberta.ca/~bowman/
group/roberts_phd.pdf

12. Roberts, M., Leroy, M., Morales, J., Bos, W., Schneider, K.: Self-organization of helically
forced MHD flow in confined cylindrical geometries. Fluid Dynamics Research 46(6),
061,422 (2014). URL http://stacks.iop.org/1873-7005/46/i=6/a=061422

13. Ying, L., Fomel, S.: Fast computation of partial Fourier transforms. Multiscale Modeling
and Simulation 8(1), 110–124 (2009)


