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Chapter 1

Introduction

Differential equations (abbreviated DEs) are equations involving functions and their derivatives.
For example,

(1.1)
dy

dx
= y

is a differential equation: y is a function of the independent variable x, and the rate of change of y
with respect to x (ie dy

dx ) is equal to the value of y. We would like to determine y.
The solution to this equation is

y = Cex,

with C an arbitrary constant. We can check that it is a solution:

dy

dx
=

d

dx
Cex

= Cex

= y.

That is, if we plug y = Cex into equation (1.1), both sides match. If we modify this a little bit, say
letting y = Cex + x, then the left hand side doesn’t match the right:

dy

dx
=

d

dx
(Cex + x)

= Cex + 1

= y + 1

6= y,

so it isn’t a solution to equation (1.1).
An initial value problem (abbreviated as IVP) is a differential equation combined with one or

more initial conditions. For example,

dy

dx
= y, y(0) = 1

is an initial value problem. The differential equation is solved by y = Cex, for any value of C.
However, the only way to satisfy

y(0) = 1
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with the solution y = Cex is to set C = 1. That is, the solution to the initial value problem is

y = ex,

since it satisfies both the differential equation and the initial conditions.
In these brief notes we will describe techniques that can solve a small variety of different types

of differential equations. In practice, some DEs can be solved analytically, and some can’t; when we
can’t solve them analytically, we can sometimes find a numerical solution that gives us an answer
that we can use. But the first step is always to try and find an exact, analytic solution, and it is
these techniques which we will demonstrate in these notes.
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Chapter 2

Separable and Exact DEs

2.1 Separable equations

Separable equations are differential equations of the form

(2.1)h(y)
dy

dx
= g(x) .

These are simple to solve: from equation (2.1), we can just split the derivative and integrate:
h(y) dy = g(x) dx becomes ∫

h(y) dy =

∫
g(x) dx ,

and then all we need to do is find the integral and solve for y.

Example: Consider the equation

(2.2)y
dy

dx
= sin(x)

with initial condition y(0) = 1. Separating and integrating,
∫
y dy =

∫
sin(x) dx,

yields
y2

2
= − cos(x) + C

where C is a constant that will be determined by the initial conditions. Let us now solve for y:

y(x) = ±
√

2C − 2 cos(x).

Notice that we have two different solutions a positive one and a negative one. We can use the initial
condition y(0) = 1 to eliminate one. Since

y(0) = ±
√

2C − 2 cos(0)

= ±
√

2C − 2

= 1,
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and 1 is positive, we must choose the positive root. Thus,

2C − 2 = 1

so
C = 3/2,

and the solution is
y(x) =

√
3− 2 cos(x).

It’s a good idea to check that the solution that you got is correct. This is pretty easy; just plug
the solution into the original equation. From the above example, y(x) =

√
3− 2 cos(x), so

dy

dx
=

sin(x)√
3− 2 cos(x)

.

Putting this into the left-hand side of equation (2.2) yields

y
dy

dx
=
(√

3− 2 cos(x)
)
×
(

sin(x)√
3− 2 cos(x)

)

= sin(x),

which matches the right-hand side of equation (2.2), and we can be sure that we got the correct
answer.

2.2 Exact Equations

Definition: Exact equations. Homogeneous first-order differential equations can be written in the
form M(x, y)dx+N(x, y)dy = 0. If

∂M(x, y)

∂y
=
∂N(x, y)

∂x

then the equation is called exact.

The nice thing with exact differentials is that Poincare’s lemma implies the existence of a function
F such that dF = M(x, y)dx + N(x, y)dy, and dF , called the differential of F , can be thought of
as “how much F changes”. Since dF = 0, F does not change, i.e. it’s constant. Solutions to the
exact differential equation are given implicitly by F (x, y) = constant.

Exact equations are straightforward to solve: after a little bit of trickery, we simply integrate.
Let

(2.3)F (x, y) =

∫
M(x, y) dx+ g(y) .
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We require that ∂
∂yF (x, y) = N(x, y), which will allow us to determine g(y). That is,

∂F (x, y)

∂y
=

∂

∂y

(∫
M(x, y) dx+ g(y)

)

=

∫
∂M(x, y)

∂y
dx+

∂g(y)

∂y

= N(x, y) + g′(y).

This tells us what g′(y) is, so we now know g(y) up to some constant C. We can put this into
equation (2.3), which gives us the implicit solution

(2.4)F (x, y) = C .

In many cases, we can solve for y, thus getting an explicit solution y = f(x) so that F (x, f(x)) = C,
but sometimes all we have for a solution is something in the form of equation (2.4).

Example: Solve
y dx+

(
y2 + x

)
dy = 0

Using the notation above, we have M(x, y) = y, and N(x, y) = y2 +x. This equation is exact, since

d

dy
y = 1 =

d
(
y2 + x

)

dx
.

So write

F (x, y) =

∫
y dx+ g(y)

= xy + g(y).

We now need to set ∂
∂yF = N , so

∂

∂y
[xy + g(y)] = y2 + x

which implies that g′(y) = y2. We integrate this to get

(2.5)g(y) =
y3

3
+ C.

The solution is then given by

(2.6)F (x, y) = xy +
y3

3
= C.

(Note that in the above equation we have played fast and loose with the undetermined constant
C; in fact, C changed sign between equation (2.5) and equation (2.6). We perform this abuse of
notation because C is undetermined, so there’s not much point nailing it down to a value until the
very last moment.)
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2.3 Problems

1. Does y =
√

3− 2 sinx solve the differential equation

y
dy

dx
= sin(x)?

2. Solve the equation

(2xy + 3)dx+ (x2 − 1)dy = 0

3. Solve the logistic map dy
dx = y − y2 as a separable equation.

4. Give the general solution to the differential equation

dy

dt
= 1 +

1

y2

8



Chapter 3

Linear Equations &
Transformations

3.1 Linear Equations

Linear equations have the form

(3.1)
dy

dx
+ P (x)y = Q(x) .

To solve these equations, we use an integrating factor. That is, if we define the integrating factor µ
as

µ(x)
.
= exp

[∫
P (x) dx

]
,

then notice that
d

dx
(µy) =

dµ

dx
y + µ

dy

dx

= µP (x)y + µ
dy

dx
.

So if we multiply equation (3.1) by µ, we get

d

dx
(µy) = µQ,

which we can now solve by taking the integral of both sides with respect to x. Doing this, we get

d(µy) = µQdx

which implies that

µy =

∫
µQdx+ C.
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This provides us with the general formula for the integrating factor,

(3.2)y =

∫
µQdx+ C

µ
.

Example: Consider the equation
dy

dx
+
y

x
= 2ex.

We identify P (x) = 1/x and Q(x) = 2ex. The integrating factor is

µ(x) = exp

[∫
1

x
dx

]

= eln x

= x.

Then,

(3.3)
d

dx
(xy) = 2xex,

integrating this gives

(3.4)xy =

∫
2xex dx.

From the formula (equation (3.2)), we have

(3.5)
y =

∫
µQdx+ C

µ

=

∫
2xex dx+ C

x
.

To solve this, we use integration by parts. That is,
∫
u dv = uv −

∫
v du. We choose u = x and

dv = ex dx, so du = dx, and v = ex. Thus,
∫
xex dx = xex −

∫
ex dx

= xex − ex.

Putting this into equation (3.5) yields

y = 2ex
(

1− 1

x

)
+
C

x
.

If we had been provided with initial conditions, we would now use them to determine the value of
C.
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3.2 Equations that can be solved via substitution

Sometimes it is possible to make a substitution to transform a differential equation into something
that we already know how to solve. For example, the integrating factor technique transforms linear
equations into separable equations. This can be a very powerful technique. Unfortunately, each
type of equation needs its own particular substitution and this makes substitution not as straight
forward as other techniques.

The most important examples of substitution are linear, homogeneous, and Bernoulli equations.
We also consider two other types of equations that can be solved by substitution, which are shown
in the flow chart in Figure 3.1.

Homogeneous Equations

dy

dx
= f

(y
x

)
.

We solve this by substituting v = y/x, so that

dy

dx
= v + x

dv

dx
, ⇒ v + x

dv

dx
= f(v),

which can be written as the separable equation

dv

dx
=
f(v)− v

x
.

Example:
dy

dx
=
x

y
, with y(1) = 2.

This is homogeneous, so let v = y/x, and then f(v) = 1
v , so

v + x
dv

dx
=

1

v
.

The equation is now separable:
1

1
v − v

dv =
1

x
dx.

Integrating both sides gives ∫
v

1− v2 dv =

∫
1

x
dx.

Let u = 1− v2 to solve the integral:

−1

2

∫
1

u
du = lnx+ lnC
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which implies that
ln (u) = ln

(
1− v2

)

= ln
C

x2
.

In terms of v, we have which implies that

v = ±
√

1− C

x2
.

Expressing this in terms of the original variable y gives

y = ±x
√

1− C

x2
.

The initial condition is y(1) = 2, so we choose the positive root, and find C by setting x = 1, y = 2,
i.e.

2 = 1×
√

1− C

so C = −3. The solution of the initial value problem is

y = x

√
1 +

3

x2
.

This would be a good one to check. Note that

dy

dx
=

√
1 +

3

x2
− 3/x2√

1 + 3
x2

=
1√

1 + 3
x2

=
x

y
,

so the solution is correct.

Bernoulli Equations

Bernoulli equations are differential equations of the form

dy

dx
+ P (x)y = Q(x)yn

where n can be an integer or a rational number. Note that if n = 0 or n = 1, then this is just a
linear equation.

We solve this by substituting v = y1−n, so that

dv

dx
= (1− n)y−n

dy

dx

and rearranging gives
1

1− n
dv

dx
+ P (x)v = Q(x).
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We can write this as a linear equation:

dv

dx
+ (1− n)P (x)v = (1− n)Q(x).

Example:
dy

dx
− 1

2

y

x
= −exy3

Since n = 3, choose v = y−2. Then

dv

dx
= −2y−3

dy

dx
⇒ dv

dx
= −2y−3

(
1

2

y

x
− exy3

)
⇒ dv

dx
+
v

x
= 2ex,

which is the linear equation given as the example from section 3.1.
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3.2.1 Flow chart for solving first-order DEs

As we have seen, it is sometimes necessary to use several transformations in order to solve a given
DE. Each type of first order DE that we have seen so far is ultimately separable, as outlined in the
flow chart below, or exact.

Bernoulli DEs
dy
dx

+ Py = Qyn

Linear DEs
dy
dx

+ Py = Q

DEs with Linear Coefficients

(a1x+ b1y + c1)dx+ (a2x+ b2y + c2)dy = 0

Homogeneous

dy
dx

= f
(
y
x

) dy
dx

= G(ax+ by)

Separable DEs

h(y) dy
dx

= g(x)

z = y1−n

µ = exp
(∫

P (x) dx
)

x = u+ h, y = v + k
a1h+ b1k + c1 = 0
a2h+ b2k + c2 = 0

z = y
x

z = ax+ by

Figure 3.1: Flow chart for solving first-order DEs

3.3 Problems

1. Solve the initial value problem

(x2 + 1)
dy

dx
+ 4xy = 4x,

with initial condition
y(0) = 0 or 1

(choose one, and circle your choice).

2. Joe headed out to the bar in his new Thinsulate jacket, but drank too much and passed out
on the way home. Ignoring the heat that his body produces, his temperature is determined
by Newton’s law of cooling. Determine Joe’s temperature T at time t by solving Newton’s
law of cooling, both as a separation problem and a linear problem

dT

dt
= −r(T − Tenv),
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where T (0) = 37, Tenv = −40, and r = 5 (Thinsulate’s r-value).

3. Solve the logistic map,

dy

dx
= y − y2.

as a Bernoulli equation

4. Solve the differential equation

dy

dx
=
y

x
+ x2y2.

5. Equations of the form dy
dx = f(ax+ by) may be transformed into a separable equation via the

substitution v = ax+ by. Using this technique, solve the differential equation

dy

dx
= −(4x− y)

2

6. Equations of the form

(a1x+ b1y + c1)dx+ (a2x+ b2y + c2)dy = 0

can be transformed into homogeneous equations by using the substitution x = u + h and
y = v + k, with h and k constants which obey the relationship

a1h+ b1k + c1 = 0

a2h+ b2k + c2 = 0.

This reduces the problem to

dv

du
= −a1 + b1(v/u)

a2 + b2(v/u)
,

which is homogeneous in u and v. Solve the differential equation

(2y + 2)dx+ (x+ y + 2)dy = 0

using this technique.

15



Chapter 4

Second-order Linear Equations

Let a, b, c be real numbers. Second order equations of the form

(4.1)a
d2y

dt2
+ b

dy

dt
+ cy = 0

are linear in y. If both y1 and y2 are solutions to equation (4.1), and α and β are constants, then

αy1 + βy2

is a linear combination of y1 and y2. If we put this linear combination into the original differential
equation, we get:

a
d2(αy1 + βy2)

dt2
+ b

d(αy1 + βy2)

dt
+ c(αy1 + βy2)

= α

(
a
d2y1
dt2

+ b
dy1
dt

+ cy1

)
+ β

(
a
d2y2
dt2

+ b
dy2
dt

+ cy2

)

= α× 0 + β × 0

= 0.

In other words, αy1 + βy2, which is a linear combination of y1 and y2, is also a solution to equa-
tion (4.1). Being able to use this linearity is a powerful tool that we can use to solve this very
important type of differential equation. We will, in general, have two solutions to these second-
order differential equations, and we will need two initial values to fully determine the solution. This
is expressed in the following theorem:

Theorem 4.1: Let b, c, Y0, and Y1 ∈ R. Then, the initial value problem

y′′ + by′ + cy = 0, y(0) = Y0, y′(0) = Y1

has a unique solution.
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4.1 Homogeneous Linear Equations

The behaviour of these systems is basically exponential. To see this, set y = ert. Then, putting
this into equation (4.1), we get

ar2ert + brert + cert = ert
(
ar2 + br + c

)

= 0.

Since ert is never zero, there is no harm in dividing by it. This leaves us with the characteristic
equation,

ar2 + br + c = 0 ,

which allows us to determine r using the quadratic formula. In this way we get two solutions,

y1 = er1t and y2 = er2t ,

from the two solutions r1 and r2 of the characteristic equation.

Example: Solve the second-order homogeneous equation

d2y

dt2
− y = 0,

with initial conditions y(0) = 1, y′(0) = 0.
Solution: Setting y = ert, this becomes

ert
(
r2 − 1

)
= ert(r − 1)(r + 1)

= 0,

so r1 = −1, and r2 = 1. Thus,
y1(t) = e−t, y2(t) = et.

The solution y is therefore a linear combination of y1 and y2. That is,

y(t) = αy1(t) + βy2(t)

= αe−t + βet,

for some constants α and β that are determined by the initial conditions. Since y(0) = 1,

(4.2)y(0) = α+ β

= 1.

Since y′(0) = 0, and y′(t) = −αe−t + βet,

(4.3)y′(0) = −α+ β

= 0.

Combining equations (4.2) and (4.3), it is easy to see that α = β = 1
2 . The solution is therefore

y =
e−t + et

2
.
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4.2 Dealing with complex roots

So far, we’ve seen only problems where the roots of the characteristic equation are real. Of course,
this isn’t always the case, but we can deal with this using Euler’s Formula,

eiθ = cos(θ) + i sin(θ) .

For example, if we get r1,2 = 4± 2i, then solutions are a linear combination of

e(4+2i)t = e4tei2t

= e4t(cos(2t) + i sin(2t))

and
e(4−2i)t = e4te−i2t

= e4t(cos(2t)− i sin(2t)).

An easy way to get all linear combinations is to just set

y1(t) = e4t cos(2t), y2(t) = e4t sin(2t).

Example: Give the general solution to
d2y

dt2
+ 1 = 0

with initial conditions y(0) = 1, y′(0) = 0.
Solution: The characteristic equation is

r2 + 1 = 0 ⇒ r = ±i.

The solution is then a linear combination of

y1(t) = e0t cos(t) = cos(t), y2(t) = e0t sin(t) = sin(t)

Setting y(t) = α cos(t) + β sin(t), we can input the initial conditions to get

y(0) = α cos(0) + β sin(0) = α = 1,

y′(0) = −α sin(0) + β cos(0) = β = 0.

The solution to the IVP is then y(t) = cos(t).

4.3 Dealing with repeated roots

In the above section, we were lucky, since we had two independent roots. Two independent roots
gave two independent solutions y1 and y2, which we used to solve the two initial values for the
problem. When we have repeated roots, we still need to make sure that we have two independent
solutions. How do we get this? Well, just multiply one solution by t1.

1Note that if y = ert is a solution, with r a double-root. To simplify matters, let a = 1. Then,

d2y

dt2
+ b

dy

dt
+ cy =

(
d

dt
− r

)(
d

dt
− r

)
y.
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For example, suppose that we solved the characteristic equation and got r1 = r2 = r. We still
get one solution out of this, namely

y1(t) = ert.

To get the second solution, just take
y2(t) = ty1(t)

= tert.

This works since d2t
dt2 = 0, so the extra t in y2 is eventually killed, and everything cancels out nicely.

Example: Give the general solution to

d2y

dt2
− 2

dy

dt
+ 1 = 0

with initial conditions y(0) = 1, y′(0) = 0.
Solution: The characteristic equation for this problem is

r2 − 2r + 1 = (r − 1)(r − 1)

= 0,

which has the double root r1 = r2 = 1. Thus, set y1(t) = et and y2 = tet, so

y = αet + βtet

Now,
y(0) = α = 1.

For the second condition, calculate that y′(t) = αet + βet + βtet. Thus

y′(0) = α+ β = 0.

Thus, α = 1 and β = −1, so the solution is

y(t) = et − tet.

Now,
(
d
dt
− r
)
ert = 0, so it’s easy to see that

(
d
dt
− r
)[

tert
]
= ert. Then,

d2
(
tert

)

dt2
+ b

d
(
tert

)

dt
+ c
(
tert

)
=

(
d

dt
− r

)(
d

dt
− r

)(
tert

)
=

(
d

dt
− r

)
ert = 0,

so tert is indeed another solution. Moreover, it is clear that ert and tert are linearly independent.
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4.3.1 Flow chart for 2nd-order linear homogeneous DEs

Second-order linear differential equations with real-valued coefficients will produce two (possibly
equal) real roots or a pair of complex roots. In this case, you will never encounter repeated complex
roots, and you can use the following flow-chart to solve these types of equations:

Differential equation

a2y
′′

+ a1y
′

+ a0y = 0

Characteristic equation

a2r2 + a1r + a0 = 0

r1 6= r2, both real

y1 = er1t, y2 = er2t

r1 = r2, real

y1 = er1t, y2 = ter1t

r1,2 = α± iβ

y1 = eαt cos(βt), y1 = eαt sin(βt)

General solution

y = C1y1 + C2y2

Match initial conditions

y = ert

Figure 4.1: Flow chart for solving second-order homogeneous DEs

4.4 Problems

1. Solve the IVP
2y′′ + 5y′ + 2y = 0

with initial conditions y(0) = 0 and y′(0) = 3/2.

20



2. Solve the IVP
2y′′ + 8y = 0

with initial conditions y(0) = 1 and y′(0) = 2.

3. Solve the IVP
y′′ + 2y′ + 4y = 0

with initial conditions y(0) = 0 and y′(0) = 2.

4. Prove Euler’s formula using differential equations.
Consider the IVP

y′′ + y = 0, y(0) = 1, y′(0) = i.

• Step 1: Show that {y1 = cos(t), y2 = sin(t)} are solutions to the differential equation.
Find a solution y = αy1 + βy2 to the IVP.

• Step 2: Using the characteristic equation, find a different pair of solutions {y1, y2} made
up of complex exponentials. Find a solution y = αy1 + βy2 to the IVP.

• Step 3: Use the uniqueness theorem to show that these two solutions must be identical,
thereby proving Euler’s formula.

5. Find the general solution of the differential equation

10,000 y′′ − 100,000 y′ + 250,000 y = 0.

6. Solve the IVP
y′′ + 4y′ + 5y = 0

with y(π) = e−π, y′(0) =
√
π + 2eπ.
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Chapter 5

Non-homogeneous 2nd Order
Linear DEs

5.1 Method of Undetermined Coefficients

The next step is to add a function to the right-hand side of equation (4.1), so that we get

ay′′ + by′ + cy = f(t).

Then what we have is a non-homogeneous equation and we say that equation ay′′ + by′ + cy = 0 is
the corresponding homogeneous equation.

In this section, we are going to restrict ourselves to a couple of choices for f(t) so that we can
use the method of undetermined coefficients, also known as we can probably guess what the answer
is, so let’s do that.

The idea behind this method is trying to find the particular solution yp, which has the property

(5.1)ay′′p + by′p + cyp = f(t),

though it need not match the initial conditions. For instance, if f(t) = sin(t), guessing that
yp = A sin(t)+B cos(t) would probably do the trick. We can just substitute yp = A sin(t)+B cos(t)
into equation (5.1) in order to find the values of A and B that work.

Here is a table that will guide you, young Jedi:

f(t) yp
keat Ceat

ktn Cnt
n + Cn−1t

n−1 + · · ·+ C1t+ C0

k cos(at) or k sin(at) K cos(at) +M sin(at)
ktneat eat

(
Cnt

n + Cn−1t
n−1 + · · ·+ C1t+ C0

)

ktn cos(at) or ktn sin(at) (Cnt
n + · · ·+ C0) cos(at) + (Dnt

n + · · ·+D0) sin(at)
keat cos(bt) or keat sin(bt) eat(K cos(at) +M sin(at))
ktneat cos(bt) or ktneat sin(bt) (Cnt

n + · · ·+ C0)eat cos(bt) + (Dnt
n + · · ·+D0)ebt sin(bt)
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Finally, if your guess ends up being a polynomial times a linear combination of the solutions to
the corresponding homogeneous equation (known as y1 and y2 in previous lab), then multiply your
guess by t until it isn’t. For example, if

y1 = et, y2 = e2t, and f(t) = t2et,

then you would choose
yp = t

(
C2t

2 + C1t+ C0

)
et.

If y1 = et, y2 = tet and f(t) = t2et, then you would choose

yp = t2
(
C2t

2 + C1t+ C0

)
et.

Once you have determined yp, combine it with the homogeneous solutions to give the general
solution

y(t) = αy1(t) + βy2(t) + yp(t)

to match the initial conditions.

Example: Solve the IVP
(5.2)y′′ − 3y′ + 2y = t

with y(0) = 3/4 and y′(0) = 3/2.
Solution: This has characteristic equation

r2 − 3r + 2 = (r − 1)(r − 2) ⇒ r1 = 1, r2 = 2,

so the homogeneous solutions are y1(t) = et, y2 = e2t. Since f(t) = t is not a linear combination of
y1 and y2, we can just choose yp = C1t+ C0. Putting this into equation (5.2), we get

d2(C1t+ C0)

dt2
− 3

d(C1t+ C0)

dt
+ 2(C1t+ C0) = t

which implies that
−3C1 + 2C1t+ 2C0 = t,

so C1 = 1/2 and C0 = 3/4. Thus, yp = t
2 + 3

4 , and the general solution is

y = αet + βe2t +
t

2
+

3

4
.

Now, we satisfy the initial conditions:

y(0) = α+ β +
3

4
=

3

4
⇒ α+ β = 0,

and

y′(0) = α+ 2β +
1

2
=

3

2
⇒ α+ 2β = 1
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so α = −1 and β = 1. The solution is therefore

y(t) = −et + e2t +
t

2
+

3

4
.

Let’s check this solution. We have

y(t) = −et + e2t +
t

2
+

3

4

y′(t) = −et + 2e2t +
1

2

y′′(t) = −et + 4e2t.

Putting these into equation (5.2) yields

y′′ − 3y′ + 2y =
(
−et + 4e2t

)
− 3

(
−et + 2e2t +

1

2

)
+ 2

(
−et + e2t +

t

2
+

3

4

)

= t,

as required.

5.2 Superposition Principle

Suppose that we know the solution y1,p to

ay′′ + by′ + cy = f(t)

and the solution y2,p to
ay′′ + by′ + cy = g(t).

We can use these to determine the solution to the more difficult problem

(5.3)ay′′ + by′ + cy = Af(t) +Bg(t)

by using the fact that the differential operator

L = a
d2

dt2
+ b

d

dt
+ c

is linear. That is, for constants α and β

L(αy1,p + βy2,p) = a(αy1,p + βy2,p)
′′

+ b(αy1,p + βy2,p)
′
+ c(αy1,p + βy2,p)

= α
(
ay′′1,p + by′1,p + cy1,p

)
+ β

(
ay′′2,p + by′2,p + cy2,p

)

= αL(y1,p) + βL(y2,p),

just like “linearity” is defined in linear algebra. Then since L(y1,p) = f(t) and L(y2,p) = g(t),

L(Ay1,p +By2,p) = Af(t) +Bg(t),

which gives us the particular solution for equation (5.3) without having to do a lot of extra work.
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Example: Find the general solution to

y′′ − 3y′ − 4y = t+ 10e−t.

Solution: The characteristic equation for the homogeneous part is 0 = r2 − 3r − 4 = (r + 1)(r − 4)
which gives r1 = −1 and r2 = 4. The solution space is then spanned by {y1 = e−t, y2 = e4t}. We
can use the superposition principle to break this problem up into two smaller problems:

1.
(5.4)y′′ − 3y′ − 4y = t

Notice that t is not a multiple of y1 or y2, so, looking at the table, we use y1,p = at + b.
Plugging this into equation (5.4), we get

−3(a)− 4(at+ b) = t

Grouping the terms that have a factor of t, we get −4at = t ⇒ a = −1/4. Similarly, the
constant terms give us −3a− 4b = 0, which, with a = −1/4, gives b = 3/16. Thus

y1,p =
−t
4

+
3

16
.

2.
(5.5)y′′ − 3y′ − 4y = e−t

The situation here is slightly different, since e−t is both part of the homogeneous solution,
and on the right-hand side. Thus, we need to choose y2,p = cte−t. Plugging this into
equation (5.5), we get

(ct− 2c)e−t − 3(−ct+ c)e−t − 4cte−t = e−t.

Dividing by e−t and gathering powers of t, we get the following system:

ct+ 3ct− 4ct = 0 ⇒ 0 = 0

which isn’t useful at all. But,

−2c− 3c = 1 ⇒ c = −1

5

Notice that the first equation didn’t tell us anything, but the second equation gave us every-
thing that we needed to solve the system. That is

y2,p = − te
−t

5
.
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We combine these two solutions to give us the particular solution for the problem: we want L(yp) =
t+ 10e−t. We found that y1,p gives us t, and y2,p gives us e−t, so we choose

yp = y1,p + 10y2,p

=
−t
4

+
3

16
− 2te−t.

The general solution is then

y = αy1 + βy2 + yp

= αe−t + βe4t − 2te−t − t

4
+

3

16
.

5.3 Problems

1. Solve the IVP
y′′ − y = cos(t)

with initial conditions y(0) = 0 and y′(0) = 1.

2. Solve the IVP
y′′ + y = cos(t)

with initial conditions y(0) = 0 and y′(0) = 1.

3. Solve the IVP
y′′ + y = cos(t) + t

with initial conditions y(0) = 0 and y′(0) = 1.
Hint: first solve y′′ + y = cos(t), and then y′′ + y = t. Combine the two to solve y′′ + y =
cos(t) + t, to which you can apply the initial conditions.

4. Use the method of undetermined coefficients to find a particular solution of the differential
equation

x′′(t)− 3x′(t) = 27t2e3t
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Chapter 6

Variation of Parameters

The method of undetermined coefficients is pretty easy, but it only works when we have certain
functions on the right-hand side. The method of variation of parameters gives us a more general
way to determine yp. The technique is actually an application of Cramer’s rule from linear algebra,
and can be generalized to linear differential equations of any order.

Given a differential equation
y′′ + by′ + cy = f(t)

with homogeneous solutions {y1(t), y2(t)}, we are going to look for a particular solution of the form
yp = u1(t)y1(t) + u2(t)y2(t). This means that y′p = (u′1y1 + u′2y2) + (u1y

′
1 + u2y

′
2), which we can

simplify by setting1

(6.1)u′1y1 + u′2y2 = 0.

Substituting this into the original differential equation produces the linear system

u′1y1 + u′2y2 = 0 (6.2)

u′1y
′
1 + u′2y

′
2 = f.

Using Cramer’s rule to solve the linear system, the solution is

yp = y1

∫ −fy2
w

dt+ y2

∫
fy1
w

dt

where

w =

∣∣∣∣
y1 y2
y′1 y

′
2

∣∣∣∣

is the Wronskian. The general solution is, as always,

y = αy1 + βy2 + yp.

1If you work out the details, it’s easy to see that equation (6.1) makes the system much easier to solve because
it reduces the order of the system for u1 and u2. The addition of equation (6.1) gives us two equations to solve for
two unknowns.
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Example: Give the general solution to

(6.3)y′′ − 2y′ + 2y = 2et

using variation of parameters.
Solution: The characteristic equation is

r2 − 2r + 2 = 0

which has roots r = 1± i. Thus, y1 = et cos t, and y2 = et sin t. The Wronskian is

w =

∣∣∣∣
y1 y2
y′1 y

′
2

∣∣∣∣
= e2t[cos t(cos t+ sin t)− sin t(cos t− sin t)]

= e2t.

The particular solution is

yp = et cos t

∫ −2etet sin t

e2t
dt + et sin t

∫
2etet cos t

e2t
dt

= 2et
(
cos2 t+ sin2 t

)

= 2et.

Check : When we put yp into equation (6.3), we get

2et − 4et + 4et = 2et,

so we got the correct yp.
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6.0.1 Flow chart for 2nd-order linear nonhomogeneous DEs

a2y
′′

+ a1y
′

+ a0y = f(t)

Solve homogeneous equation

a2y
′′
h + a1y

′
h + a0yh = 0

=⇒ yh = C1y1 + C2y2

Find particular soltion yp with

a2y
′′
p + a1y

′
p + a0yp = f(t)

Find f(t) in table, get yp

Calculate Wronskians

w =

∣∣∣∣
y1 y2
y′1 y′2

∣∣∣∣

Is any term in yp also in yh? multiply yp by t yp = y1
∫ −fy2

w
dt + y2

∫ fy1
w

dt

determine coefficients by putting yp into

a2y
′′
p + a1y

′
p + a0yp = f(t)

apply initial conditions to

y = C1y1 + C2y2 + yp

y = yh + yp

yes

no

Figure 6.1: Flow chart for solving second-order non-homogeneous DEs
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6.1 Problems

1. Use the method of variation of parameters to find the general solution of

y′′ − 2y′ + y = t−1et.

2. Use the method of variation of parameters to find the general solution of

y′′ + 4y = sin(2t).

3. Find the general solution to

y′′ + y = tan t+ t.

4. Derive the method of variation of parameters for first-order linear equations, i.e. equations of
the form

y′ + by = f(t).

Hint: consider the method in terms of the determinants of matrices.
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Chapter 7

Laplace Transforms

Transformations are a very interesting part of mathematics because they give us another perspec-
tive from which to look at a problem. If we’re lucky with our choice of transformation, then the
answer just pops out at us.

The Laplace transform of a function f(t), which we denote by either L(f(t)) or F (s), is defined
as

L(f(t)) =

∫ ∞

0

e−stf(t) dt.

This is itself a function, though we have changed the independent variable from t to s. So long
as f is sufficiently smooth and doesn’t grow too fast as t goes to infinity, we can always find its
Laplace transform.

Example: Find the Laplace transform of
f(t) = t

Solution: The Laplace transform of t is given by

F (s) =

∫ ∞

0

te−st dt

Using integration by parts with u = t and dv = e−st,

F (s) = t
e−st

−s

∣∣∣∣
∞

0

−
∫ ∞

0

e−st

−s dt

=
1

s2
,

that is, L(t) = 1/s2.
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Well, that was an excellent example, and we all had a lot of fun. The question remains, however,
“why is this useful?” Consider the Laplace transform of the first derivative of y(t):

L(y′) =

∫ ∞

0

y′(t)e−st dt

= y(t)e−st
∣∣∞
0
−
∫ ∞

0

y
(
−se−st

)
dt,

so
L(y′) = sL(y)− y(0) .

That is, the Laplace transform changes derivatives into polynomials in s, which can be much easier
to deal with! The Laplace transform of the nth derivative of y is

L(y(n)) = snL(y)− sn−1y(0)− · · · − y(n−1)(0) ,

which we will apply to higher-order differential equations.

Example: Compute the Laplace transform of the function

f(t) = e2t + e3t.

Solution 1 : By the definition of the Laplace transform,

L{f}(s) =

∫ ∞

0

e−stf(t)dt

=

∫ ∞

0

(
e2t + e3t

)
e−stdt

=

∫ ∞

0

e2te−stdt+

∫ ∞

0

e3te−stdt

=
e(2−s)t

2− s

∣∣∣∣
∞

0

+
e(3−s)t

3− s

∣∣∣∣
∞

0

=
1

s− 2
+

1

s− 3
.

Alternatively, we can solve this using the table of Laplace transforms:
Solution 2 : The Laplace transform is linear, so

L{e2t + e3t} = L{e2t}+ L{e3t}
=

1

s− 2
+

1

s− 3
.

Of course, you should know how to use both techniques.
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7.1 Problems

1. Find the Laplace transform of f(t) = tn where n ∈ N, n > 0.

2. Find the L(eαt cos t) and L(eαt sin t) by finding the Laplace transform of e(α+iβ)t.

3. Prove that the Laplace transform is linear.

4. Prove that

L(y(n)) = snL(y)− sn−1y(0)− · · · − y(n−1)(0).
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Chapter 8

Solving DEs with Laplace
Transforms

Consider a first-order IVP of the form

y′ + by = f(t), y(0) = y0.

Taking the Laplace transform of the DE and applying the properties of Laplace transforms yields

sL(y)− y(0) + bL(y) = L(f).

Rearranging for L(y), we get

L(y) =
L(f) + y0
s+ b

.

We need to invert the Laplace transform in order to determine y. Since the inverse Laplace transform
is kind of complicated, the easiest way to deal with this is to use the table of Laplace transforms
found in section A.2, page 67.

It is often necessary to use the technique of partial fractions to disentangle the Laplace transform
of the solution so we can take the inverse transform. Here’s an example of how it works in an initial
value problem:
Example: Solve the following differential equation using Laplace transforms

y′′ + 4y = 4t2 − 4t+ 10, y(0) = 0, y′(0) = 3

Solution: Since

L(y′′) = s2L(y)− sy(0)− y′(0)

= s2L(y)− 3,

the Laplace transform of the left hand side is

s2L(y)− 3 + 4L(y)

which is equal to the Laplace transform of the right hand side,

8

s3
− 4

s2
+

10

s
.
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Rearranging for L(y) yields

L(y) =
8− 4s+ 10s2 + 3s3

s3(s2 + 4)

and we need to use partial fractions to deal with this:

8− 4s+ 10s2 + 3s3

s3(s2 + 4)
=
As2 +Bs+ C

s3
+
Ds+ E

s2 + 4

implies that

8− 4s+ 10s2 + 3s3 = (A+D)s4 + (B + E)s3 + (C + 4A)s2 + 4Bs+ 4C.

We can match the coefficients of each power of s to get

4C = 8⇒ C = 2

4B = −4⇒ B = −1

2 + 4A = 10⇒ A = 2

−1 + E = 3⇒ E = 4

A+D = 0⇒ D = −2.

So we have

L(y) =
2s2 − s+ 2

s3
+
−2s+ 4

s2 + 4
.

Now use the table of Laplace transforms to get

y(t) = t2 − t+ 2 + 2 sin 2t− 2 cos 2t.

8.1 Laplace Transforms of Periodic Functions

Periodic functions behave particularly nicely under Laplace transforms. Suppose the function f(t)
is periodic with period T . That is, for all t,

f(t+ T ) = f(t).

The Laplace transform of f is

L{f} =

∫ ∞

0

f(t)e−stdt

=

∫ T

0

f(t)e−stdt+

∫ 2T

T

f(t)e−stdt+ · · ·+
∫ (n+1)T

nT

f(t)e−stdt+ . . .

Then we perform the change of variables τ = t− nT to see that this is just
∫ T

0

f(τ)e−sτdτ + e−sT
∫ T

0

f(τ)e−sτdτ + · · ·+ e−nsT
∫ T

0

f(τ)e−sτdτ + . . .

=
(
1 + e−sT + e−2sT + · · ·+ e−nsT + . . .

)
×
∫ T

0

f(τ)e−sτdτ.
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Now, the first factor is just the geometric series
∑∞
n=0 r

n = 1/(1− r) with r = e−sT , so

(8.1)L{f} =

∫ T
0
f(t)e−stdt

1− e−sT .

Example:
Find the Laplace transform of a saw wave with period T = 1,

f(t) =

{
t if t ∈ (0, 1);
f(t−N) if t ∈ (N,N + 1) for N ∈ N.

Solution: From equation (8.1), we have

L{f} =

∫ 1

0
te−stdt

1− e−sT

=

[
t e

−st

−s

]1
0
−
∫ 1

0
e−st

−s dt

1− e−s

=
se−s − e−s + 1

s2(1− e−s) .

8.2 Problems

1. Find L−1F (s) if

F (s) =
5s2 + s− 3

(s+ 3)(s2 − 2s− 3)

2. Solve the following IVP:

y′′ + y = et, y(0) = 1, y′(0) = 0.

3. Find the Laplace transform of the square wave with period T = 2,

f(t) =

{
−1 if t ∈ (0, 1);

1 if t ∈ (1, 2).

4. Solve the following IVP:

y′ + 2y = e−2t, y(0) = 0.
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Chapter 9

Laplace Transforms: Convolutions,
Impulses and Delta functions

9.1 Convolutions

The Laplace transform is linear, so it deals with linear DEs very well. But not all DEs are linear.
In fact, the most aren’t.

The Laplace transform is a good tool when the nonlinear term is a convolution. The convolution
of two functions f(t) and g(t) from (0,∞) to R is written f ∗ g and is defined as

(9.1)(f ∗ g)(t) =

∫ t

0

f(t− τ)g(τ) dτ.

It has a particularly nice Laplace transform. If we write L(f) = F and L(g) = G, then

(9.2)L(f ∗ g) = F (s)G(s).

That is, the Laplace transform of a convolution is the product of their Laplace transforms.
Example:

Solve y′′ = g(t), y(0) = c0, y′(0) = c1 for y(t) using Laplace transforms.
Solution: Taking the Laplace transform of both sides, we have

s2Y − sc0 − c1 = G(s).

Solving for Y yields

Y =
G+ sc0 + c1

s2
=
G

s2
+
c0
s

+
c1
s2
.

The solution is then the inverse Laplace transform, i.e.

y = L−1
(
G(s)

1

s2
+ c0 + c1t

)

= g(t) ∗ t+ c0 + c1t.
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This technique can be extended to the full harmonic oscillator,

y′′ + by′ + cy = g, y(0) = c0, y′(0) = c1,

which then has solution

y = g(t) ∗ L−1
(

1

s2 + bs+ c

)
+ L−1

(
sc0 + bc0 + c1
s2 + bs+ c

)
.

9.2 Laplace Transforms of Discontinuous Functions

The Laplace transform, like the method of variation of parameters, allows us to solve differential
equations by integrating. This can be tremendously useful, since we can deal with differential
equations with functions that are not smooth; they need only be integrable.

The step function, also known as the Heaviside function, is defined as

uc(t) =

{
0 if t < c;
1 if t > c.

(9.3)

and is useful for describing processes that start at a certain time.

y

t

1

c

Figure 9.1: Graph of the step function uc(t).

The Laplace transform of the step function is straightforward to calculate. If we take c > 0,
then

L(uc(t)) =

∫ ∞

0

uc(t)e
−stdt =

∫ ∞

c

e−stdt =
e−cs

s
.

The step function often shows up multiplied by other functions, but it’s easy to spot. Whenever
you have an exponential in the frequency domain, the inverse Laplace transform involves a step
function: just use the formula

L[uc(t)f(t− c)] = e−csF (s).

Example:
Solve the differential equation

y′ = tuc(t), y(0) = 0
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using Laplace transforms.
Solution:

Take the Laplace transform of both sides of the differential equation, yielding

sY = L[tuc(t)]

= L[uc(t)(t− c)] + cL[uc(t)]

= e−cs
1

s2
+ c

e−cs

s

Thus,

Y =
ce−sc

s2
+
e−sc

s3
.

From the table of Laplace transforms, we know that L(f(t− c)uc(t)) = e−csF (s), so

y = c(t− c)uc(t) +
1

2
(t− c)2uc(t).

9.3 The Impulse and delta Functions

While the step function describes functions which start suddenly (like turning on a switch), the
delta function, δ(t), is slightly more complicated. It describes processes that happen in an instant,
like the impact from a hammer. It is (loosely) defined as having the following properties:

δ(t) =

{
∞ if t = 0;
0 if t 6= 0.

(9.4)

and, for any function f(t),

∫ ∞

−∞
f(t)δ(t) dt = f(0) . (9.5)

Example: Solve the following differential equation using Laplace transforms.

2y′′ + y′ + 2y = δ(t− 5), y′(0) = y(0) = 0

Solution: Taking the Laplace transform of both sides, we have

(9.6)
(
2s2 + s+ 2

)
Y = e−5s.

To see that the Laplace transform of δ(t−5) is e−5s, consider the definition of the Laplace transform:

L(δ(t− 5)) =

∫ ∞

0

e−stδ(t− 5) dt. (9.7)

If we let τ = t− 5, then this is the same as
∫ ∞

−5
e−s(τ+5)δ(τ) dτ.

39



Then we apply equation (9.5) to see that this is just e−5s.
Going back to equation (9.6), solving for Y and completing the square yields

Y =
e−5s

2

(
1

(
s+ 1

4

)2
+ 15

16

)
.

Finding the inverse transform is the hardest part of this process, but we can break it up into smaller
steps. We can just pull the 1/2 out because the Laplace transform is linear and then if we rearrange
this, we get

Y =
2√
15
e−5s

√
15
16

(
s+ 1

4

)2
+ 15

16

=
2√
15
e−5s L

[
e

−t
4 sin

(√
15

4
t

)]

Now we have an exponential term, e−5s, times a term that is the Laplace transform of eαt sin(βt)
with α = 1/4 and β =

√
15/16. So we will use the Laplace transform table to see that Y is the

Laplace transform of

y =
2√
15
u5(t)e

−(t−5)
4 sin

(√
15

4
(t− 5)

)
.

9.4 Problems

1. Solve the integro-differential equation

y(t) +

∫ t

0

y(v)(t− v)dv = 1.

2. Find the Laplace transform of

f =

{
et if t < c;
t2 if t ≥ c.

3. Prove that L(f ∗ g) = F (s)G(s).

4. Solve y′′ = t× uc(t), y(0) = y′(0) = 0, for y(t) using Laplace transforms.

5. Solve the IVP
y′′ + y = Mδ(t− 1), y′(0) = y(0) = 0.
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Chapter 10

Solving Systems of Differential
Equations

Up to now, we could have solved every problem with the method of variation of parameters.
You’ve probably noticed that some questions are easier to solve with certain techniques than with
others, of course, but VoP will handle any nonhomogeneous part, so long as you can calculate the
integral. Here’s something that it won’t handle:

Example: Solve the system of initial value problems for both x and y:

x′ = −y x(0) = 0

y′ = x y(0) = 1

Well, you can actually solve this by doing tricky things like taking the derivative of one of the
equations, but let’s use Laplace transforms:

Solution: The Laplace transform of the original system is

sX = −Y
sY − 1 = X.

Solving for Y yields

sY − 1 =
−Y
s

⇒ Y =
s

s2 + 1
. (10.1)

Taking the inverse Laplace transform of equation (10.1) gives us

y(t) = cos t.

We can solve for X in a similar way, or just notice that x = y′, i.e.

x(t) = − sin t.
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Systems of differential equations model situations where there are two or more quantities are
changing in time, for example heat and reaction rate, or predator and prey populations. While
they are obviously of great use, they can get quite complicated as the number of variables increases
(and are greatly simplified by writing them in terms of matrices).

Example: Solve the following system of differential equations:

x′ − 3x+ 2y = sin t

4x− y′ − y = cos t

with initial conditions x(0) = y(0) = 0.

Solution:
We take the Laplace transform of each equation and put in the initial conditions, which yields

sX − 3X + 2Y =
1

s2 + 1

4X − sY − Y =
s

s2 + 1
.

We can solve the second equation for X:

X =
1

4

(
s

s2 + 1
+ (s+ 1)Y

)

Put this into the first equation, so

(s− 3)

(
1

4

s

s2 + 1
+
s+ 1

4
Y

)
+ 2Y =

1

s2 + 1

which gives

(10.2)

Y = − (s− 4)(s+ 1)

(s2 + 1)(s2 − 2s+ 5)

=
11s+ 7

10(s2 + 1)
+

−11s+ 5

10(s2 − 2s+ 5)

=
11s

10(s2 + 1)
+

7

10(s2 + 1)
+
−11

10

s− 1

(s− 1)2 + 22
− 3

10

2

(s− 1)2 + 22

by partial fractions and completing the square in the last two terms. We are now in a position to
use an inverse Laplace transform to get y(t):

y(t) =
7

10
sin t+

11

10
cos t− 11

10
et cos 2t− 3

10
et sin 2t

It now remains to solve for x(t). We use the solution for X and the Laplace transform of y. This
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is to say

(10.3)

X =
1

4

(
s

s2 + 1
+ (s+ 1)Y

)

=
−1 + 7s

10(s2 + 1)
+

−7s+ 15

10(s2 − 2s+ 5)

=
7s

10(s2 + 1)
+

−1

10(s2 + 1)
+
−7

10

s− 1

(s− 1)2 + 22
+

2

5

2

(s− 1)2 + 22

So we can now use an inverse Laplace transform to get x(t).

x(t) =
−1

10
sin t+

7

10
cos t− 7

10
et cos 2t+

2

5
et sin 2t

Alternatively, we could have solved this as a linear system, since
[

(s− 3) 2
4 −(s+ 1)

](
X
Y

)
=

( 1
s2+1
s

s2+1

)

which is easily solved for X and Y to give
(
X
Y

)
=

1

s2 + 1
· 1

s2 − 2s+ 5

(
3s+ 1
s2 − 3s− 4

)
,

which brings us to equations (10.2) and (10.3) with a lot less work.

10.1 Problems

1. Solve the following system of differential equations:

x′ = z, x(0) = 0
y′ = x, y(0) = 0
z′ = y, z(0) = 1.

2. Solve the following system of differential equations

x′ − y = et, x(0) = 1.

y′ + x = et, y(0) = 0.

3. Solve the system of differential equations

x′ + y = 0, x(0) = 1

y′ = 2 cosh(2t), y(0) = 1
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Chapter 11

Series Solutions to DEs

An appropriately smooth function f(t) may be represented as a Taylor series,

f(t) =

∞∑

i=0

f (i)(a)

i!
(t− a)i .

The Taylor series breaks f(t) up into powers of t; this can be very useful in solving some differential
equations. It’s important to when a series solution is valid, which is to say, when the Taylor series
converges to the value of the function. To answer this question, we have a variety of tests:

1. The comparison test : if limn→∞ |an/bn| ∈ (0,∞), then
∑∞
n=0 an converges if and only if∑∞

n=0 bn converges.

2. The ratio test : if limn→∞

∣∣∣an+1

an

∣∣∣ = c < 1, then
∑∞
n=0 an converges.

3. The root test : if limn→∞ |an|1/n = c < 1, then
∑∞
n=0 an converges.

4. The integral test : if there is a function f with f(n) = an, then
∑∞
n=0 an converges if and only

if
∫∞
0
f(t)dt is finite.

5. The alternating series test : if an = (−1)ncn, cn ≥ 0, then
∑∞
n=0 an converges so long as

limn→∞ cn = 0 and cn+1 < cn for large enough n.

If we know the Taylor series, we can use these tests to determine the range in which the series
equals the function. If you try and get a solution outside of this range, you might get an answer,
but it’s not going to be a correct one.

Example:
Find the Taylor series for f = ex about x = 0 and determine its interval of convergence.

Solution: First, we need to find the derivatives of ex. This is easy, since

f (n)(x) =
dn

dxn
ex = ex.
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Thus, f (n)(0) = e0 = 1, so the Taylor series is given by

∞∑

n =0

1

n!
xn.

For what values of x will this series converge? To determine this, we’ll have to use a convergence
test. Our test are: Let’s try the ratio test. That is, fix x and look at

lim
n→∞

an+1

an
= lim
n→∞

xn+1/(n+ 1)!

xn/n!
= lim
n→∞

x

n+ 1
= 0 < 1.

That is, for any x ∈ R, n + 1 will eventually be greater than x. Thus, the limit is zero, and the
series converges for all x ∈ (−∞,∞) = R.

In the above example, the series converged everywhere. This isn’t always the case: often, a series
solution to a differential equation is only valid in some neighbourhood of the initial conditions, and
the series becomes divergent when |t− a| > r, and we call r the radius of convergence.

Now that we can calculate Taylor series and know when they are valid, we can use them to
calculate solutions to differential equations. To simplify matters, we will restrict ourselves to initial
value problems which begin at t = 0, so that a = 0 in all the above formulae. Now, we can express
the solution y(t) as a power series,

(11.1)y(t) =

∞∑

n=0

ant
n.

which is really just a Taylor series:

(11.2)y(t) =

∞∑

n=0

y(n)(0)

n!
tn.

Since Taylor series are unique, equations (11.1) and (11.2) must agree term-by-term. That is, for
n = 0, 1, 2, . . . ,

an =
y(n)(0)

n!
.

That is, initial conditions specify coefficients: if you are given y(0) = c0, then you know that

a0 = y(0)/0!

= c0.

Similarly, y′(0) = c1 specifies a1, and so on.
We assume that this solution is analytic, so we can take the derivative of the series term-by-term.

That is,
dy

dt
=

d

dt

∞∑

n=0

ant
n =

∞∑

n=0

d

dt
(ant

n) =

∞∑

n=0

annt
n−1 =

∞∑

n=1

annt
n−1.

The last equality is because when n = 0 we have that a0× 0× t0−1 = 0, so we can ignore this term.
To solve differential equations using power series, we put the power series representation

for y(t), y′(t), and so on, into the differential equation. Matching like powers of t gives us a a
recurrence relation, which expresses an in terms of am with m < n, which we can solve to get an
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in terms of n and the initial conditions.

Example:
Solve the IVP

y′′ = −y, y(0) = 1, y′(0) = 0.

using a Taylor series for y.
Solution:

Again, let y =
∑∞
n=0 ant

n. Then

y′′ =

∞∑

n=2

ann(n− 1)tn−2.

The differential equation is then

(11.3)

∞∑

n =2

ann(n− 1)tn−2 = −
∞∑

n=0

ant
n

If we set m = n− 2, then we can shift the summation index on the LHS to start at zero. That is,

y′′ =

∞∑

n=2

ann(n− 1)tn−2

=

∞∑

m=0

am+2(m+ 2)(m+ 1)tm.

This makes it much easier to solve equation (11.3), since we now have

∞∑

m =0

am+2(m+ 2)(m+ 1)tm = −
∞∑

n=0

ant
n

and we can put it all together to get

∞∑

n =0

[an+2(n+ 2)(n+ 1) + an]tn = 0

In order for this to hold for all t in a neighbourhood of t = 0, it must be that

an+2(n+ 2)(n+ 1) + an = 0

which gives us the recurrence relation

(11.4)an+2 =
−an

(n+ 2)(n+ 1)
.

From the initial conditions, we have a0 = 1 and a1 = 0. We can solve for a2 by setting n = 0 in
equation (11.4), which yields a2 = − 1

2 .
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If we have n even, then n = 2p, and

a2p = − a2p−2
2p(2p− 1)

=
a2p−4

2p(2p− 1)(2p− 3)(2p− 4)

=
(−1)pa0

(2p)!

=
(−1)p

(2p)!

It’s easy to see that a3 = 0, and, in fact, an = 0 if n is odd. Since we now know the values for all
the an, we can write the solution:

y(t) =

∞∑

n=0

tn

{
(−1)n/2

n! if n is even;
0 if n is odd.

=

∞∑

p=0

(−1)pt2p

(2p)!
.

You may recall from previous classes that this is just the Taylor series for cos t.
Sometimes we just don’t know how to solve a differential equation, and the best that we can do

is to give an approximation of the solution which is valid over some range. One way to do this is to
use the Taylor Polynomial Approximation (or simply a Taylor polynomial). It’s easy to deal with
both analytically and numerically, and it can be used to get at least a basic understanding of just
about any initial value problem. The nth degree Taylor polynomial is

fn(t) = f(a) + f ′(a)(t− a) + · · ·+ f (n)(a)

n!
(t− a)n

=

n∑

i=0

f (i)(a)

i!
(t− a)i,

and it exists for any function f whose first n derivatives are smooth for t ∈ [a, t]. Let Rn(t) =
f(t) − fn(t) denote the error associated with the nth Taylor polynomial. Then, Taylor’s theorem
states that there exists a number ξ ∈ [a, t] where

Rn(t) =
f (n+1)(ξ)

(n+ 1)!
(t− a)n+1 .

So long as limn→∞Rn(t) = 0, fn will be a better and better approximation as n increases.

11.1 Problems

1. Determine the convergence set of the series

∞∑

n =0

3n

n
(x− 2)n.
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2. Determine the first four non-zero terms of the Taylor series of the solution to the Chebyshev
equation,

(1− x2)y′′ − xy′ + p2y = 0

with initial conditions y(0) = a0, y′(0) = a1.

3. Solve

y′ =
1

1 + x2
, y(0) = 0

using a Taylor series. Do not leave your solution as an infinite series, but equate it to a known
function.

4. Give a recursion formula for an if

a3n+1 =
a1

(3n+ 1)× (3n)× (3n− 2) . . . 6× 4××3
.

5. Given the recursion relationship

an =
−2

n2
an−1,

find an explicitly.

6. Given the recursion relationship

an+4 =
−k2

(n+ 4)(n+ 3)
an−1,

with k a constant, find an explicitly.

7. Solve the differential equation

y′′ − 2xy′ + λy = 0,

with λ a constant, using a Taylor series about x = 0. For what values of λ is the solution a
polynomial?

8. Find the general solution to y′′′ + λy = 0.

9. Find the general solution to y′ = 2xy.
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Chapter 12

Series Solutions to DEs at Regular
Singular Points

Differential equations of the form

(12.1)y′′ + p(t)y′ + q(t)y = 0

can behave poorly at t = 0, and may not admit solutions of the form y(t) =
∑∞
n=0 ant

n. However,
we can still solve these problem by modifying the series expansion. The easiest case is when the
singular point is a regular singular point, for which we use the method of Froebenius.

Definition: Singular points. The point t = 0 is a singular point if either limt→0 p(t) = ∞ or
limt→0 q(t) =∞.

Definition: Regular singular points. The point t = 0 is a regular singular point of equation (12.1)
if the two limits limt→0 tp(t) = p0 and limt→0 t

2q(t) = q0 exist and are finite.

Series solutions at regular singular points have one solution of the form

y1(t) =

∞∑

n=0

ant
n+r ,

for some r ∈ C such that a0 6= 0.
Since we now have one more variable for which to solve (i.e. r in addition to a0, a1, . . . ), we

require one more equation in order to determine the solution uniquely. Then if we take the first and
second derivative of y(t) =

∑∞
n=0 ant

n+r and put them into the left-hand side of equation (12.1),
we can see that the leading-order (which is to say the tr−2) coefficient is

a0r(r − 1)tr−2 + a0
p0
t
rtr−1 + a0

q0
t2
tr

In order to satisfy equation (12.1), this equation must equal 0. We can multiply by t2 and since
a0 6= 0, we see that

r(r − 1) + p0r + q0 = 0.
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This is called the indicial equation. It’s a quadratic so it has two solutions, r = r1, r2.
Second-order differential equations always have two independent solutions. For regular singular

points, there are three cases which determine the form of y2:

1. If r1 6= r2, and r1 − r2 is not an integer:

then y2 =

∞∑

n=0

bnt
n+r2 .

2. If r1 = r2:

then y2 = ln(t)y1(t) +

∞∑

n=0

bnt
n+r1 .

3. If r1 6= r2, and r1 − r2 is an integer:

then y2 = C ln(t)y1(t) +

∞∑

n=0

bnt
n+r2 , for some C ∈ C.

Once one has determined r1 and r2, the constants an and bn can be determined by matching
powers as per the previous section. We’re often only interested in determining y1.

Example:
Consider Bessel’s equation,

(12.2)t2y′′ + ty′ + (t2 − α2)y = 0.

Solution:
We can divide Bessel’s equation by t2 to get it in the form of equation (12.1), that is

y′′ +
1

t
y′ +

(
1− α2

t2

)
y = 0,

which is clearly singular. We can identify p = 1/t, and q = 1− α2

t2 . Then,

p0 = lim
t→0

tp(t) = 1, and q0 = lim
t→0

t2q(t) = −α2.

The indicial equation is then r(r − 1) + r − α2 = 0⇒ r1,2 = ±α. Thus,

y1 =

∞∑

n=0

ant
n+α

y′1 =

∞∑

n=0

an(n+ α)tn+α−1,

y′′1 =

∞∑

n=0

an(n+ α)(n+ α− 1)tn+α−2.

Putting this into equation (12.2), we have

∞∑

n =0

an
[
(n+ α)(n+ α− 1) + (n+ α)− α2

]
tn+α +

∞∑

n =0

ant
n+2+α = 0.
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Changing the index of the second sum, we have

∞∑

n =0

an
[
(n+ α)(n+ α− 1) + (n+ α)− α2

]
tn+α +

∞∑

n =2

an−2t
n+α = 0.

The a0 and a1 terms are determined by initial conditions. For n ≥ 2, the terms must cancel, so we
have

an

[
(n+ α)

2 − α2
]
tn+α + an−2t

n+α = 0

which implies that

an =
−an−2

(n+ α)
2 − α2

=
−an−2

n(n+ 2α)
.

Associating y1 with a0 = 1 and a1 = 0, we can set n = 2m, so the recursion relationship is

a2m =
−a2(m−1)

2m(2m+ 2α)

=
−a2(m−1)

22m(m+ α)
.

Solving the recursion relationship then yields

a2m =
(−1)ma0

22mm! (m+ α)(m+ α− 1) . . . (1 + α)
.

The solution is then

(12.3)y1 =

∞∑

m=0

(−1)m

22mm! (m+ α)(m+ α− 1) . . . (1 + α)(α)
tm+α.

We can simplify this a little by setting a0 = 1/(2αΓ(α+ 1)). Then we would get the standard form
of Bessel’s function of the first kind of order α,

Jα(t) =

∞∑

n=0

(−1)n

n! Γ(1 + α+ n)

(
t

2

)2n−α

.

Here Γ(x) is called the Gamma function and it is an extension of the factorial function. So in
particular, when α = 0, we get

J0(t) =

∞∑

n=0

(−1)nt2n

22n(n! )2
.
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12.1 Problems

1. Find a general solution to the Cauchy-Euler (equidimensional) equation,

(πx)2y′′(x) + π(π − 2)xy′(x) + y(x) = 0

for x > 0.

2. Find the solution to Bessel’s equation corresponding to r = −α, assuming that 2α is not an
integer.

3. Find the first solution (i.e. y1 in the above notation) to the differential equation

x2y′′ − xy′ + (1− x)y = 0.
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Chapter 13

Partial Differential Equations

Let u(x, t) be the temperature of a one-dimensional rod with thermal conductivity k. The equation
that describes the evolution of y is called the heat equation:

∂u

∂t
= k

∂2u

∂x2
.

This is an important example of a partial differential equation (PDE), in which the derivatives with
respect to one variable are related to derivatives with respect to another variable, in this case ∂/∂t
and ∂/∂x.

The basic technique for solving partial differential equations is to transform it into many ordinary
differential equations, which we can then solve using any of the techniques that we have discussed
so far. One very powerful technique to do this is to transform the function y into a Fourier series.

13.1 Separation of Variables

As in the previous section, we use a series solution for y and expand around x = 0. However,
instead of the coefficients being constant, we allow them to be functions of time, and, instead of
using xn, we let Xn(x) be a more general function of x. That is, we let

u(x, t) =

∞∑

n=0

Tn(t)Xn(x).

As you will see in the next lab, we can choose the functions Xn in a way that makes the PDE
solvable. For now, let’s consider the case where the Xn are either sine or cosine, i.e. when u is a
Fourier sine or cosine series.
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13.2 Fourier Cosine and Sine Series

Consider functions that are periodic with period 2T . If we set Xn = cos(nπx/T ), we have the
Fourier cosine series for f(x),

a0
2

+

∞∑

n=1

an cos
(nπx
T

)

(note the annoying 1/2 on the first term). Setting Xn = sin(nπx/T ), we get the Fourier sine series
for f(x),

∞∑

n=1

bn sin
(nπx
T

)
.

The coefficients an and bn are determined by integration, with

(13.1)an =
1

T

∫ T

−T
f(x) cos

(nπx
T

)
dx ,

and

bn =
1

T

∫ T

−T
f(x) sin

(nπx
T

)
dx .

More generally, the Fourier series for f(x) is the sum of these, i.e.

a0
2

+

∞∑

n=1

[
an cos

(nπx
T

)
+ bn sin

(nπx
T

)]
.

Often, we just look at functions that have period 2π, which makes for the simpler formulae,

(13.2)

a0
2

+

∞∑

n =1

[an cos (nx) + bn sin (nx)],

an =
1

π

∫ π

−π
f(x) cos (nx) dx,

bn =
1

π

∫ π

−π
f(x) sin (nx) dx,

which we will refer to as “the” Fourier series, unless otherwise stated.
Well, now we have yet another series that we can derive from a given function, but we have to

show that the series converges to the function if we want to do anything useful. For this we have
the following lemma:

Theorem 13.1 (Riemann-Lebesque lemma): If
∫∞
−∞ |f(x)| dx exists, then

lim
z→±∞

∫ ∞

−∞
f(x)eizxdx = 0
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which implies that limn→∞ an = 0 and limn→∞ bn = 0, and

f(x) =
a0
2

+

∞∑

n=1

[an cos(nx) + bn sin(nx)].

The Fourier series is the expression of a function as the sum an infinite series of waves with
different amplitudes. That is, we transform from “x-space” to “frequency-space”, which can be
incredibly useful. For example, the Ogg Vorbis audio format is just a modified cosine-series.
Fourier series (and Fourier transforms, which are not covered in this course) lie at the heart of
signal analysis. In terms of solving PDEs, we make use of the fact that

d2

dx2
sin(λx) = −λ2 sin(λx),

(i.e. that sine is an Eigenfunction of d2/dx2) to turn differential equations into algebraic equations.
But more on that later. First, let’s just find the Fourier series for a normal function.
Example:

Find the Fourier series of f(x) = x for x ∈ (−π, π).
Solution:

To find the Fourier series, we just need to determine an and bn using equation (13.2). The
coefficients for the cosine series are

an =
1

π

∫ π

−π
x cos(nx) dx

=
1

π

[
x

sin(nx)

n

∣∣∣∣
π

−π
−
∫ π

−π

sin(nx)

n
dx

]

=
1

π

[
0− 1

n2
cos(nx)| π−π

]

= 0.

This could have been expected, since f(x) = x is an odd function, and cos(nx) is even, and the
integration domain is symmetric. Notice, then, that the cosine series of a function is equal to the
even part of the function. Now, for the sine series, we have

bn =
1

π

∫ π

−π
x sin(nx) dx

=
1

π

[
−x cos(nx)

n

∣∣∣∣
π

−π
−
∫ π

−π

− cos(nx)

n
dx

]

=
1

π

[−π cos(πn)

n
− −π cos(−nπ)

n
− 0

]

=
1

π

[−2π

n
cos(nπ)

]

=
−2(−1)n

n

= (−1)n+1 2

n
.
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The Fourier series for f(x) = x is then

(13.3)x = 2

∞∑

n=1

(−1)n+1

n
sin(nx).

This does indeed converge to f(x) = x around x = 0, as can be seen in figure 13.1.

−3

−2

−1

0

1

2

3

f
(x
)

−2.5 0 2.5
x

x
2 terms
10 terms
100 terms
1000 terms

Figure 13.1: Fourier series approximations to f(x) = x.
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13.3 Problems

1. What are the Fourier sine and cosine series for y = sinx, x ∈ (−π, π)?

2. What is the Fourier series for f(x) = δ(x− 1), x ∈ (−π, π)?

3. What is the Fourier series for f(x) = 2u0(x)− 1, x ∈ (−π, π)?

4. What is the Fourier series in x for f(x, t), x ∈ (−π, π), if

f(x, t) =

{
−t if x < 0;
t if x ≥ 0

?
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Chapter 14

Partial Differential Equations:
Actually Solving Them

Let us now return to the heat equation,

∂u

∂t
= β

∂2u

∂x2
, (14.1)

and add some initial conditions
u(x, 0) = f(x),

and boundary conditions

u(0, t) = 0, u(π, t) = 0. (14.2)

Physically, this corresponds to modelling the temperature on a rod of length π in contact at both
ends with a heat sink with temperature 0 (note that this is not necessarily absolute zero: if we take
u = u + C, the equation remains the same, so our base temperature is arbitrary.) The rod starts
with the temperature at position x given by f(x).

We’ll solve this using separation of variables:

u =

∞∑

n=0

Tn(t)Xn(x), (14.3)

where we have taken Xn(x) to be orthogonal1. Putting equation (14.3) into equation (14.1), we get

∞∑

n=0

dTn(t)

dt
Xn(x) = β

∞∑

n=0

Tn(t)
d2Xn(x)

dx2
(14.4)

Now, since the Xn’s are orthogonal, this actually holds term-by-term. That is, for each n, we have

T ′n(t)Xn(x) = βTn(t)X ′′n(x)

1That is, if i 6= j, then
∫ π
0 Xi(x)Xj(x)dx = 0. This is the case with elements of {1, cos(nx), sin(nx), n = 1, 2, . . . }.
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which we can rearrange to get
1

β

T ′n(t)

Tn(t)
=
X ′′n(x)

Xn(x)
.

Now, the LHS is independent of x, so the RHS must also be independent of x. Since the RHS is
also clearly independent of t, it must be constant. That is,

1

β

T ′n(t)

Tn(t)
=
X ′′n(x)

Xn(x)
= Kn,

where Kn can only depend on n.
This gives us an ODE for Xn,

X ′′n = KnXn. (14.5)

Now, depending on the sign of Kn, we have three possibilities, which we will deal with by enforcing
the boundary conditions. Since the Xn are orthogonal, the boundary conditions must be satisfied
for each n. The cases are:

1. Kn = k2n > 0. In this case, Xn(x) = C1 cosh(knx) + C2 sinh(knx). But then, Xn(0) = 0
implies that C1 = 0, and Xn(π) = 0 implies that C2 = 0, so this Eigenfunction is zero.

2. Kn = 0. In this case, we get Xn(x) = C1 + C2x. Again, the boundary conditions imply that
C1 = C2 = 0, so this Eigenfunction is again zero.

3. Kn = −k2n < 0. This gives us periodic behaviour,

Xn(x) = C1 cos(knx) + C2 sin(knx).

We require that Xn(0) = C1 = 0, so we can remove all the cosines. The other boundary
condition gives us

Xn(π) = C2 sin(knπ) = 0,

which implies that either C2 = 0 or kn is an integer. Since this is our last chance to have Xn

not be zero everywhere, we can’t have C2 = 0, so we set kn to be an integer. In particular,
set kn = n.

Thus, Kn = −n2, and

Xn = sin(nx).

Much simpler!
We now have enough information to start determining Tn. We know that Kn = −n2, so Tn

obeys the equation
T ′n = βKnTn = −βn2Tn

which is solved by

Tn = Tn(0)e−βn
2t.
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Putting this together, our solution (so far) is

u(x, t) =

∞∑

n=0

Tn(0)e−βn
2t sin(nx).

To get this, we have used the original equation and the boundary conditions. We still have to
determine the values of Tn(0), for which we will use the initial conditions, u(x, 0) = f(x). That is,

u(x, 0) = f(x)

=

∞∑

n=0

Tn(0)e−βn
2t sin(nx)

=

∞∑

n=0

Tn(0) sin(nx).

In other words, this is just a sine-series for f(x)! However, instead of integrating over (−π, π), we
only know f(x) for x ∈ (0, π). We can solve this problem by extending f(x) as an odd function by
setting f(−x) = −f(x), so the coefficients are given by

Tn(0) =
1

π

∫ π

−π
f(x) sin(nx)dx

=
2

π

∫ π

0

f(x) sin(nx)dx,

since the integrand is even.
The solution to the heat equation, for the type of initial and boundary conditions given above,

is

u(x, t) =
2

π

∞∑

n=1

[∫ π

0

f(x) sin(nx) dx

]
e−βn

2t sin(nx).

Example:
The initial temperature in a rod of length π is given by

u(x, 0) = 2 sin(x) + sin(5x), (14.6)

and the temperature at the ends of the rod is kept at zero. Assuming that

∂u

∂t
= β

∂2u

∂x2
,

find u(x, t) for x ∈ (0, π), t > 0. Solution:
The boundary conditions match those given in equation (14.2), so the above analysis shows that
we can express u as a linear combination of {sin(nx), n = 1, 2, . . . }. That is,

u(x, t) =

∞∑

n=1

Tn(0)e−βn
2t sin(nx).
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The initial conditions are that u(x, 0) = 2 sin(x) + sin(5x), so T1(0) = 2, T5(0) = 1, and all others
are zero. We can then write the solution as

u(x, t) = 2e−βt sin(x) + e−25βt sin(5x).

This result is shown for various times in figure 14.1 for β = 1.

0

1

2

3
y
(x
,t
)

0 1 2 3
x

t = 0
t = 0.05
t = 0.1
t = 2

Figure 14.1: The temperature at different times with initial conditions given in equation (14.6).
Notice that the sin(5x) term, which decays like e−25βt, is relevant only for small t.

14.1 Non-homogeneous constant boundary conditions

Suppose that the boundary conditions were instead

u(0, t) = A, u(π, t) = B.

Notice that these conditions match the case Kn = 0 with

u(x, t) =
B −A
π

x+A.

This obeys the heat equation, since

∂2

∂x2
(mx+ b) = 0 =

∂

∂t
(mx+ b),

and is independent of t, i.e. it is a steady state solution. Then, setting

g(x) = f(x)−
(
A+

B −A
π

x

)
,

(14.7)u(x, t) = A+
B −A
π

x+
2

π

∞∑

n=1

(∫ π

0

g(x) sin(nx)dx

)
e−βn

2t sin(nx)
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matches both the initial and boundary conditions.
Example:

Solve the initial boundary problem

(14.8)
∂u

∂t
= β

∂2u

∂x2
,

u(0) = 1, u(π) = 1 + π,

u(x, 0) = f(x) = x2 + x+ 1

for u(x, t).
Solution: The steady-state solution is x+ 1. Let

g(x) = f(x)− (x+ 1)

= x2

Then,

u(x, t) = 1 + x+

∞∑

n=1

Tn(0)e−βn
2t sin(nx).

And in order to satisfy u(x, 0) = 1 + x+ x2, we have

x2 =

∞∑

n=1

Tn(0) sin(nx).

The coefficients are given by the formula

Tn(0) =
2

π

∫ π

0

x2 sin(nx) dx

=
2

π

(
x2
− cos(nx)

n

∣∣∣∣
π

0

+
2

n

∫ π

0

x cos(nx)dx

)

=
2

nπ

[
−π2 cos(nπ) +

2

n

(
x sin(nx)|π0 −

∫ π

0

sin(nx)dx

)]

=
−2π

n
cos(nπ)− 4

n3π
[− cos(nx)]

π
0

=
−2π

n
(−1)n + 4

(−1)n − 1

n3π

The solution is therefore

u(x, t) = 1 + x+

∞∑

n=1

[−2π

n
(−1)n + 4

(−1)n − 1

n3π

]
e−βn

2t sin(nx).
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14.1.1 Flow chart for solving the heat equation

The Heat Equation

∂u
∂t

= β ∂
2u
∂x2

Separation of Variables

u(x, t) =
∑
α Tα(t)Xα(x)

Modes

Tα(t)Xα(x) =





eαβt
[
C1(α) cos(

√−αx) + C2(α) sin(
√−αx)

]
, α < 0

C1(0) + C2(0)x, α = 0
eαβt [C1(α) cosh(

√
αx) + C2(α) sinh(

√
αx)] , α > 0

Boundary Conditions?

Homogeneous Dirichlet

u(0, t) = 0, u(L, t) = 0

Non-Homogeneous Dirichlet

u(0, t) = u0, u(L, t) = uL

Homogeneous Neumann
∂u(x,t)
∂x

∣∣∣
x=0

= ∂u(x,t)
∂x

∣∣∣
x=L

= 0

Tα(t)Xα(0) = 0
Tα(t)Xα(L) = 0

α 6= 0 :
Tα(t)Xα(0) = 0
Tα(t)Xα(L) = 0

α = 0 :
T0(t)X0(0) = u0
T0(t)X0(L) = uL

Tα(t)X
′
α(0) = 0

Tα(t)X
′
α(L) = 0

u(x, t) =

∑∞
n=1 bne

−β n2π2
L2 t sin

(
nπx
L

)
u(x, t) =

u0 +
uL−u0
L

x+
∑∞
n=1 bne

−β n2π2
L2 t sin

(
nπx
L

)
u(x, t) =

a0
2
+
∑∞
n=1 ane

−β n2π2
L2 t cos

(
nπx
L

)

u(x, 0) = f(x)

bn = 2
L

∫ L
0 f(x) sin(nx) dx

u(x, 0) = f(x)

bn = 2
L

∫ L
0

(
f(x)− u0 − uL−u0

L
x
)
sin(nx) dx

u(x, 0) = f(x)

an = 2
L

∫ L
0 f(x) cos(nx) dx

Solution

u(x, t)

X
′′
α

Xα
= T

′
α

βTα
= α

Figure 14.2: Flow chart for solving the heat equation.
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14.2 Problems

1. Show that equation (14.7) does indeed solve the heat equation with the given boundary and
initial conditions.

2. Solve the heat equation

∂u

∂t
= β

∂2u

∂x2

with boundary conditions u(0, t) = u(π, t) = 0 and initial condition u(x, 0) = 2 sin(x) −
sin(3x).

3. An inanimate carbon rod of length π is hit with a “laser”, transferring an amount of heat H
to a point at its centre, where H is a constant. That is, the initial temperature distribution
along its length is given by

u(x, 0) = Hδ
(
x− π

2

)
.

If the ends of the rod are kept at constant temperature 0, and the temperature in the rod
obeys the relationship

∂u

∂t
= β

∂2u

∂x2

find u(x, t) for all t ≥ 0.

4. If the boundary conditions were instead homogeneous Neumann boundary conditions at x = 0
and x = π,

∂u(x, t)

∂x

∣∣∣∣
x=0

= 0,
∂u(x, t)

∂x

∣∣∣∣
x=π

= 0,

and the initial condition u(x, 0) = cos(x), what is the solution to the heat equation, ∂u
∂t =

β ∂
2u
∂x2 ?
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Appendix A

Tables
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A.1 Table of Taylor Series

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
+ · · ·+ f (n)(a)

n!
(x− a)n + . . .

ex =

∞∑

n=0

xn

n!

sinx =

∞∑

n=0

(−1)nx2n+1

(2n+ 1)!

sinx =

∞∑

n=0

(−1)nx2n+1

(2n+ 1)!

tanx = x+
1

3
x3 +

2

15
x5 +

17

315
x7 +

62

2835
x9 + . . .

arcsinx = x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ . . .

arctanx =

∞∑

n=0

(−1)n
x2n+1

2n+ 1

1

1− x =

∞∑

n=0

xn

ln(1− x) = −
∞∑

n=1

xn

n
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A.2 Table of Laplace Transforms

f(t) L(f) = F (s)

f ′(t) sF (s)− f(0)

f ′′(t) s2F (s)− sf(0)− f ′(0)

f (n)(t) snF (s)− sn−1f(0)− · · · − f (n−1)(0)

tn
n!

sn+1

eαt
1

s− α
eαtf(t) F (s− α)

f(ct)
1

c
F
(s
c

)

cos(βt)
s

s2 + β2

sin(βt)
β

s2 + β2

cosh(βt)
s

s2 − β2

sinh(βt)
β

s2 − β2

eαt cos(βt)
s− α

(s− α)2 + β2

eαt sin(βt)
β

(s− α)2 + β2

uc(t), c > 0 e−cs/s

uc(t)f(t− c), c > 0 e−csF (s)

δ(t− c), c > 0 e−cs

∫ t

0

f(t− τ)g(τ) dτ
.
= f ∗ g F (s)G(s)

f(t) with f(t+ T ) = f(t)

∫ T
0
f(t)e−stdt

1− e−sT

tnf(t) (−1)n
dn

dsn
F (s)
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A.3 Table of Integrals

∫
udv = uv −

∫
vdu

∫
cosxdx = − sinx

∫
sinxdx = cosx

∫
tanxdx = − ln |cosx|

∫
sin2 xdx =

1

2
x− 1

4
sin 2x

∫
cos2 xdx =

1

2
x+

1

4
sin 2x

∫
tan2 xdx = tanx− x

∫
sinn xdx = − sinn−1 x cosx

n
+
n− 1

n

∫
sinn−2 xdx

∫
cosn xdx =

cosn−1 x sinx

n
+
n− 1

n

∫
cosn−2 xdx

∫
sin ax sin bxdx = − sin(a+ b)x

2(a+ b)
+

sin(a− b)x
2(a− b) ,

a2 6= b2

∫
cos ax cos bxdx =

sin(a+ b)x

2(a+ b)
+

sin(a− b)x
2(a− b) ,

a2 6= b2

∫
sin ax cos bxdx = −cos(a+ b)x

2(a+ b)
− cos(a− b)x

2(a− b) ,

a2 6= b2

∫
sec2 xdx = tanx
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∫
csc2 xdx = − cotx

∫
secx tanxdx = secx

∫
dx√
a2 − x2

= arcsin
x

a

∫
dx

x
√
x2 − a2

=
1

a
arccos

a

x

∫
dx

a2 + x2
=

1

a
arctan

x

a
,

∫
dx

a2 − x2 =
1

2a
ln

∣∣∣∣
x+ a

x− a

∣∣∣∣ ,

∫
dx√
a2 + x2

= ln
∣∣∣x+

√
x2 + a2

∣∣∣

∫
sinhxdx = coshx

∫
coshxdx = sinhx

∫
eax sinnxdx =

eax(a sinnx− n cosnx)

a2 + n2

∫
eax cosnxdx =

eax(a cosnx+ n sinnx)

a2 + n2
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