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1 Introduction

Simulations of high Reynolds-number turbulence require a large number of
Fourier modes, with no natural scale separation of which we might take ad-
vantage. The underlying hyperbolic system of equations is too large to be
simulated on any available computer system.

The technique of spectral reduction [1] is a decimation scheme that al-
lows one to simulate large systems on uniformly-coarsened spectral grids. The
multispectral method uses a hierarchy of differently-coarsened grids in Fourier
space, retaining all large-scale modes while approximating the smaller scales.

2 The models in question

Since high-Reynolds number simulations of the Navier–Stokes equations are
not currently tenable, we introduce two shell models of turbulence, the DN [3]
model,
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and the GOY [4, 5] model,

dun

dt
= ikn

(

αun+1un+2 +
β

λ
un−1un+1 +

γ

λ2
un−1un−2

)

∗

− νk2
nun, (2)

where ∗ denotes complex conjugation. These are heuristic models that mimic
the form and many statistical properties of the spectral Navier–Stokes equa-
tions. Because of these features, they are excellent test beds for theories about
turbulence.

The modal amplitude un associated with the geometrically spaced wavenum-
ber kn = k0λ

n represents a characteristic complex amplitude of the modes
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u(k) for |k| ∈ [kn, kn+1]. That is, un represents a typical velocity for a three-
dimensional shell with inner radius kn and outer radius kn+1, as shown in
Fig. 1. The combination of averaging and geometric spacing allows one to
reach high wavenumbers, and hence very high Reynolds numbers, with a small
number of modes, as shown in Fig. 2.

Fig. 1. Spectral domain for mode un.
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Fig. 2. Energy spectrum of shell-model
turbulence.

3 Spectral Reduction

Spectral reduction allows one to take two modes, say u2n and u2n+1, and
replace them with an average of the two full-resolution modes u2n and u2n+1:

un,1 =
u2n + u2n+1

2
. (3)

This uniform coarsening allows one to simulate a binned energy spectrum
using half as many modes. Spectral reduction can be applied iteratively to
the system until there are too few remaining independent modes to capture
the energy injection, inertial-range transfer, and dissipation.

An equation for d
dtun,1 follows on taking the derivative of equation (3) and

substituting either equation (1) or (2), depending on whether one is simulating
the DN or GOY models, respectively. The resulting system will conserve the
binned energy E1 = 1

2

∑

2 |un,1|
2
. An easy calculation shows that spectral

reduction reduces the GOY model to the DN model, which is then a fixed
point of the map, with each reduction modifying the parameters a, b and ν

as per equation (4):
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The energy spectrum of a singly decimated system is shown in Fig. 3.

4 Interpolation

The binned mode un,1 represents two quantities. We can recapture some of
this structure by replacing equation (3) with

un,1 =
u2n + σ∗

nu2n+1

1 + |σn|2
, σn =

u2n+1

u2n
. (5)

The complex quantity σn accounts for the slope of the amplitude across a
bin. If σn is constant with respect to time, then the energy E1 = 1
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2
is conserved. This interpolated spectral reduction can also be

applied iteratively, with the caveat that energy is conserved only when σ is
constant during a time step and over each coarse bin. In order to close the
system, we let
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where 〈. . .〉 is a windowed time average. The energy spectrum of an interpo-
lated singly decimated system is shown in Fig. 3.
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Fig. 3. Rescaled energy spectrum of spectrally reduced shell-model turbulence.
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5 The Multispectral Method

The method of spectral reduction allows one to represent a large system on
a uniformly coarsened spectral grid. However, the low-wavenumber modes
are typically of greater physical importance: one would like to coarsen just
the high-wavenumber, small-scale modes in favour of keeping all of the low-
wavenumber, large-scale modes. Unfortunately, this modifies the system’s Li-
ouville theorem, and the inviscid, unforced energy spectrum is not correctly
reproduced.

The multispectral method was designed to alleviate this problem. Since we
are unable to decimate a single grid non-uniformly, we must use two grids
which have been decimated to different degrees, as shown in Fig. 4.

Fig. 4. Schematic diagram for the DN model with the multispectral method showing
nonlinear interactions.

To evolve this system forward in time, redundant interactions are first
removed. One then evolves the fine grid from time t to t+dt using an explicit
integrator. The result of this integration is projected onto the coarse grid,
which is then also evolved from from time t to t+dt using a (possibly different)
explicit integrator. Finally, the two grids are synchronised by prolonging from
the coarse grid to the fine grid.

The resulting system reproduces the essential behaviour of the full-resolution
system, keeps all the large-scale modes, but is much less costly to simulate.
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