
The Fastest Convolution in the West

Malcolm Roberts and John Bowman

University of Alberta

2011-02-15

www.math.ualberta.ca/∼mroberts

1



Outline

•Convolution

– Definition

– Applications

•Fast Convolutions

•Dealiasing Convolutions

– Zero-padding

– Phase-shift dealiasing

– Implicit Padding

•Convolutions in Higher Dimensions

•Centered Hermitian Convolutions

•Ternary Convolutions

2



Convolutions

•The convolution of the functions f and g is

(f ∗ g)(t) =

∫ ∞

−∞

f(τ )g(t− τ ) dτ.

•For example, if f = g = χ(−1,1)(t)

•Then f ∗ g is:

3



Applications

•Out-of-focus images are a convolution:

– the actual image is convolved with the aperture opening.

• Image filtering:

– Sobel edge detection is a convolution of the image with a
gradient stencil.

•Digital signal processing:

– e.g. for low- and high-pass filters.

•Correlation analysis.

•The Lucas–Lehmer primality test uses fast convolutions.

– Useful for testing Mersenne primes.

•Pseudospectral simulations of fluids:

– (u · ∇)u is a convolution in Fourier space.
4



Discrete Convolutions

•Applications use a discrete linear convolution:

(F ∗G)k =

k∑

ℓ=0

FℓGk−ℓ.

•Calculating {(F ∗G)k}
N−1
k=0 directly takes O(N 2) operations.

•This method is not numericaly robust.

5



Fast Convolutions

•The unnormalized backward Fourier transform is

{fn}
N−1
n=0 = F−1[F ] =

N−1∑

k=0

ζknN Fk

where ζN = e−2πi/N is the N th root of unity.

•The forward transform is

{Fk}
N−1
k=0 = F [f ] =

1

N

N−1∑

n=0

ζ−kn
N fn

•This transform relies on the identity

N−1∑

j=0

ζℓjN =

{
N if ℓ = sN for s ∈ Z,

0 otherwise.

6



Fast Convolutions

•Convolutions are multiplications when Fourier-transformed:

F−1[F ∗G] =

N−1∑

j=0

fjgjζ
−jk
N =

N−1∑

j=0

ζ−jk
N




N−1∑

p=0

ζjpN Fp






N−1∑

q=0

ζjqNGq




=

N−1∑

p=0

N−1∑

q=0

FpGq

N−1∑

j=0

ζ
(−k+p+q)j
N

=N
∑

s

N−1∑

p=0

FpGk−p+sN .

•The terms with s 6= 0 are aliases; this is a cyclic convolution:

{F ∗N G}k =
N−1∑

ℓ=0

FℓmodNG(k−ℓ)modN .

7



Dealiasing via Explicit Zero-Padding

• If we pad F andG with zeroes, we recover the linear convolution:

{F̃k}
2N−1
n=0 = (F0, F1, . . . , FN−2, FN−1, 0, . . . , 0︸ ︷︷ ︸

N

)

•Then,

(F̃ ∗2N G̃)k =

2N−1∑

ℓ=0

F̃ℓ(mod 2N)G̃(k−ℓ)(mod 2N),

=

N−1∑

ℓ=0

FℓG̃(k−ℓ)(mod 2N),

=

k∑

ℓ=0

FℓGk−ℓ.

8



Dealiasing via Explicit Zero-Padding

{Fk}
N−1
k=0 {Gk}

N−1
k=0

{Fk}
N−1
k=0 {0}N−1

k=0 {Gk}
N−1
k=0 {0}N−1

n=0

{fn}
2N−1
n=0 {gn}

2N−1
n=0

{fngn}
2N−1
n=0

{(F ∗G)k}
N−1
k=0

{(F ∗G)k}
N−1
k=0

•Convolving these padded arrays takes 6KN log2 2N operations,

and twice the memory of a circular convolution.

•CPU speed and memory size have increased much faster than
memory bandwidth; this is the von-Neumann bottleneck.

9



Phase-shift Dealiasing

•The shifted Fourier transform ? is

f∆ .
= {F∆−1

[F ]}k =
N−1∑

k=0

e−
2πi
N (n+∆)kFk.

•Then, setting ∆ = 1/2, one has

(F ∗∆ G)k
.
= F∆

(
f∆g∆

)
=

k∑

ℓ=0

FℓGk−ℓ −
N−1∑

ℓ=k+1

FℓGk−ℓ+N ,

which has a dealiasing error with opposite sign.

•We recover F ∗G from two periodic convolutions:

F ∗G =
1

2
(F ∗N G + F ∗∆ G) .

10



Phase-shift Dealiasing

{Fk}
N−1
k=0 {Gk}

N−1
k=0

{fn} {gn} {f∆
k } {g∆k }

{fngn} {f∆
k f∆

k }

{F ∗N G} {F ∗∆ G}

{F ∗G}

•We don’t need to copy data to a larger buffer first.

•Convolving these padded arrays takes 6KN log2N operations,

•The memory footprint is the same as explicit padding.

•Explicit padding is better if we need to add fewer than N zeros.

11



Implicit Padding

• Suppose that we want to take a Fourier transform of

{Fk}
2N−1
k=0 , with Fk = 0 if k ≥ N.

•The discrete Fourier transform is a sum:

F−1(F )k =

2N−1∑

k=0

ζkn2NFk.

• Since Fk = 0 if k ≥ N , this is just

F−1(F )n =

N−1∑

k=0

ζkn2NFk.

•This is not a Fourier transform: the FFT algorithm doesn’t
apply.

12



Implicit Padding

•However, if we calculate even and odd terms separately, we get

f2n =
N−1∑

k=0

ζk2n2N Fk =

N−1∑

k=0

ζknN Fk,

f2n+1 =

N−1∑

k=0

ζ
k(2n+1)
2N Fk =

N−1∑

k=0

ζknN
(
Fkζ

k
2N

)
,

which are Fourier transforms.

•The inverse is the sum of two Fourier transforms:

Fk =
1

N

(
N−1∑

n=0

ζ−kn
N f2n + ζk2N

N−1∑

k=0

ζ−kn
N f2n+1

)
.

13



Implicit Padding

• Since Fourier-transformed data is of length 2N , there are no
memory savings.

•However, the extra memory need not be contiguous: this will
be shown to be quite advantageous.

{Fk}
N−1
k=0 {Gk}

N−1
k=0

{fn}
N−1
n=0 , n even {fn}

N−1
n=0 , n odd {gn}

N−1
n=0 , n even {gn}

N−1
n=0 , n odd

{fngn}
N−1
n=0 , n even {fngn}

N−1
n=0 , n odd

{(F ∗G)k}
N−1
k=0

•The computational complexity is 6KN log2(N/2).

•The numerical error is similar to explicit padding.
14



Implicit Padding: speed

•The algorithms are comparable in speed:

5

10

15

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit

implicit

•Ours is much more complicated.
15



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F GF G

f g

fg

F ∗GF ∗G

16



Convolutions in Higher Dimensions

•Notice that 3/4 of the transformed arrays are zero.

• It is possible to skip these transforms

i.e. use a pruned FFT.

• In the absence of a specially optimized routine for pruned FFTs,
it can be faster to simply transform the entire array.

17



Implicit Convolutions in Higher Dimensions

•One can perform an implicitly-padded 2D convolution by first
performing a backward transform in the x-direction,

then performing an implicit 1D convolution in the y-direction,

and then performing a forward transform in the x-direction.

F ∗G

•An implicitly padded convolution in 2 dimensions requires only
9N padded FFTs,

and only twice the memory of a cyclic convolution.
18



Alternatives

•The memory savings could be achieved more simply by using
conventional padded transforms.

•This requires copying data, which is slow.

•Phase-shift dealiasing has the same memory footprint as “1/2”
explicit padding.

19



Implicit Padding in 2D

• Implicit padding is faster in two dimensions:

10

20

30

40

50

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit

y-pruned

implicit

•And uses half the memory of explicit padding.
20



Implicit Padding in 3D

•The algorithm is easily extended to three dimensions:

20

30

40

50

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

101 102
m

explicit

xz-pruned

implicit

• Implicit padding uses 1/4 the memory of explicit padding in 3D.
21



Centered Hermitian Data

•The input F is centered if {Fk}
N/2−1
k=−N/2+1 ⇐⇒ {fn}

N/2−1
n=−N/2+1.

• If {fn} is real-valued, then F is Hermitian :

F−k = F k

•The convolution of the centered arrays f and g is

(F ∗G)k =

N/2−1∑

ℓ=k−N/2+1

FℓGk−ℓ.

•Padding centered data use a “2/3” rule:

{F̃k}
N−1
k=−N/2+1 = (F−N/2+1, . . . , F0, . . . , FN/2−1, 0, . . . , 0︸ ︷︷ ︸

N/2

).

•Phase-shifting is slower than explicit padding for centered data.
22



Centered Hermitian Data: 1D

•The 1D implicit convolution is as fast as explicit padding:

5

10

15

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit

implicit

•And has a comparable memory footprint.

23



Centered Hermitian Data: 2D

• Implicit centered convolutions are faster in higher dimensions:

20

30
ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit

y-pruned

implicit

•And uses (2/3)d−1 the memory in d dimensions.
24



Example: 2D pseudospectral Navier–Stokes

•These routines are available in the open-source package FFTW++

•We need to compute:

∂ω

∂t
= −u·∇ω = −(ẑ×∇∇−2ω)·∇ω,

which appears in Fourier space as

∂ωk

∂t
=
∑

k=p+q

pxqy − pyqx
q2

ωpωq.

•The right-hand side of this equation may be computed as

ImplicitHConvolution2(ikxω, ikyω, ikyω/k
2,−ikxω/k

2).

25



Optimal Problem Sizes

•FFTs are faster for highly composite problem sizes:

N = 2n, N = 3n, etc., with N = 2n optimal.

• “2/3” padding: 341, 683, 1365 etc

– FFTs are of size N = 512, 1024, 2048, etc.

•Phase-shift dealiasing: 2n − 1

– FFTs are of length 2n−1.

• Implicit padding: 2n − 1.

– sub-transforms are of size 2n−1.

26



Ternary Convolutions

•The ternary convolution of three vectors f , g, and h is

∗ (F,G,H)k =
∑

a,b,c∈{0,...,N−1}

FaGbHc δa+b+c,n.

•Computing the transfer function for Z4 = N 3
∑

j ω
4(xj)

requires computing the Fourier transform of ω3.

•This requires a centered Hermitian ternary convolution:

∗ (F,G,H)k =
∑

a,b,c∈{−N
2 +1,...,N2−1}

FaGbHc δa+b+c,n.

•Correctly dealiasing requires a “2/4” padding rule.

•Computing Z4 using a 2048 × 2048 pseudospectral mode
simulation retains a maximum physical wavenumber of only 512.

27



Centered Hermitian Ternary Convolutions: 1D

•The 1D implicit ternary convolution is as fast as explicit
padding:

10

15

20

25

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit

implicit

•And has a comparable memory footprint. 28



Centered Hermitian Ternary Convolutions: 2D

• Implicit centered ternary convolutions are faster in higher 2D:

30

40

50

60

70

80

90

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit

y-pruned

implicit

•And use (1/2)d−1 the memory in d dimensions.
29



FFTW++

•A C++ implementation, (FFTW++, LGPL) is available at
http://fftwpp.sourceforge.net/.

•Fastest Fourier Transform in the West (http://fftw.org/)
provides sub-transforms.

•Future work: parallelize FFTW++.

•Available in FFTW++:

– Non-centered convolutions in 1D, 2D, and 3D,

– Centered Hermitian convolutions in 1D, 2D, and 3D,

– Centered Hermitian ternary convolutions in 1D, 2D.

30



Conclusion

• Implicitly padded fast convolutions eliminate aliasing errors.

• Implicit padding uses (p/q)d−1 the memory of explicit
d-dimensional “p/q” padding.

•Computational speedup from skipping a bit-reversal in the FFT
and pruning FFTs efficiently.

•Expanding discontiguously is easier to program.

•Efficient Dealiased Convolutions without Padding, SIAM
Journal on Scientific Computing, 33, 386–406 (2011).

31


