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Convolutions

e The convolution of the functions f and g is

(gt / F(r)glt - ) d

o For example, if f =g = x(_1.1)(t)

e Then f * g is:




Applications

e Out-of-focus images are a convolution:
— the actual image is convolved with the aperture opening.
e Image filtering:

— Sobel edge detection is a convolution of the image with a
oradient stencil.

e Digital signal processing:
— e.g. for low- and high-pass filters.

e Correlation analysis.

e The Lucas—Lehmer primality test uses fast convolutions.
— Usetul for testing Mersenne primes.

e Pseudospectral simulations of fluids:

— (u - V)u is a convolution in Fourier space.



Discrete Convolutions

e Applications use a discrete linear convolution:

k
(F * G)k — Z FgGk_g.
(=0

o Calculating {(F * G} directly takes O(N?) operations.

e This method is not numericaly robust.



Fast Convolutions

e The unnormalized backward Fourier transform is
N-1
{(fohhsg =F F1 =) N'F
k=0

where (y = e 2™/ is the N root of unity:.

e The forward transform is
| N-1
{Fk}k 0 — N Z C&knfn
n=0

e This transform relies on the identity

~— {NifzzsN for s € Z,

j_
— S 0 otherwise.
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Fast Convolutions

e Convolutions are multiplications when Fourier-transformed:

N—-1 N—-1 | N—-1 | N—-1
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e The terms with s # 0 are aliases; this is a cyclic convolution:

N—-1

{F*y Gl = Z Frmod NG (k—0) mod N-
(=0



Dealiasing via Explicit Zero-Padding

e [f we pad F' and (G with zeroes, we recover the linear convolution:

(BN = (Fy, Fy, ..., Fyoo, Fx_1,0,...,0)

N——
N
e Then,
N N 2N—1 N
<F o G>/€ — Z Fé(monN)G(k—ﬁ)(monN)a
(=0
N-1
= > FiG—r)mod2n);
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Dealiasing via Explicit Zero-Padding

{Feliso {Grlizo
' '
{Fi}iso {0}25 {Gi}io {0})=)

{(F = Gty

'

{(F = Giteo

e Convolving these padded arrays takes 6 X N log, 2N operations,

and twice the memory of a circular convolution.

e CPU speed and memory size have increased much faster than
memory bandwidth; this is the von-Neumann bottleneck.




Phase-shitt Dealiasing

e The shifted Fourier transform 7 is

N-1
PPN =) e RO,
k=0
e Then, setting A = 1/2, one has
(F oy G = F2(f%g ZFka [ — Z FiGr—r4n,

(=k+1

which has a dealiasing error with opposite sign.

e We recover I' x G from two periodic convolutions:

FxG==(FxyG+ Fx,G).
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Phase-shitt Dealiasing

{Fk:fv—o1 {Gr}iso
1fu} {gn} {f} {95}
L/
! !
{F xy G} {F xa G}
M
{F %G}

e We don’t need to copy data to a larger buffer first.
e Convolving these padded arrays takes 6 K NV log, N operations,
e The memory footprint is the same as explicit padding.

e Explicit padding is better if we need to add fewer than IV zeros.
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Implicit Padding

e Suppose that we want to take a Fourier transform of
(RS with B, =0if k > N.

e The discrete Fourler transform is a sum:

2N—1
F N Fi=Y Gyke
k=0

e Since F;. = 0if £ > N, this is just
N-1
]:_l(F>n — Z ng?;bek
k=0

e This is not a Fourier transform: the FFT algorithm doesn’t
apply.
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Implicit Padding

e However, if we calculate even and odd terms separately, we get

ZCW ZC " Fy,

Fans1 = ch o Zc (Filav),

which are Fourier transforms.

e The inverse i1s the sum of two Fourier transforms:

k — % (Z CN]men + CQN Z CNkann—i—l)
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Implicit Padding

e Since Fourier-transformed data is of length 2NV, there are no
Memory savings.

e However, the extra memory need not be contiguous: this will
be shown to be quite advantageous.

{Fi}oco {Giliso
' l\‘
{fn 27:_01, n even {fn ,]:]:_01, n odd {gn 71272—01’ n even {9n 71272—01’ n odd

{fngn N_laneven {fngn N_l,nodd

{(F*Gr}izo

e The computational complexity is 6 KX N logy(N/2).

e The numerical error is similar to explicit padding.
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Implicit Padding: speed

e The algorithms are comparable in speed:
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e Ours is much more complicated.
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Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12
padded FFTs, and 4 times the memory of a cyclic convolution.

F — F G = G
Y Y
/ g
fg
v
F *x G—F x (]




Convolutions in Higher Dimensions

e Notice that 3/4 of the transformed arrays are zero.

e It is possible to skip these transforms

i.e. use a pruned FFT.

e In the absence of a specially optimized routine for pruned FFT's,
it can be faster to simply transform the entire array:.
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Implicit Convolutions in Higher Dimensions

e One can perform an implicitly-padded 2D convolution by first
performing a backward transform in the z-direction,

then performing an implicit 1D convolution in the y-direction,

and then performing a forward transform in the x-direction.

e An implicitly padded convolution in 2 dimensions requires only
9N padded FFTs,

and only twice the memory of a cyclic convolution.
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Alternatives

e The memory savings could be achieved more simply by using
conventional padded transforms.

e This requires copying data, which is slow.

e Phase-shift dealiasing has the same memory footprint as “1/2”
explicit padding.
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Implicit Padding in 2D

e Implicit padding is faster in two dimensions:
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e And uses half the memory of explicit padding.
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Implicit Padding in 3D

e The algorithm is easily extended to three dimensions:
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e Implicit padding uses 1/4 the memory of explicit padding in 3D.
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Centered Hermitian Data

N/2—1 — {fn}Nz2—1

o The input F'is centered if {F}.}, "~ N/241

o If { f,} is real-valued, then F'is Hermitian:

F . =F}

e The convolution of the centered arrays f and g is
(F * G)k — Z FgGk_g.
(=k—N/2+1

e Padding centered data use a “2/3” rule:

{F }k_ N/24+1 — (F N/241y - F07°°°7FN/2—17,07°N°/°270,)°

e Phase-shifting is slower than explicit padding for centered data.
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Centered Hermitian Data: 1D

e The 1D implicit convolution is as fast as explicit padding:
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e And has a comparable memory footprint.
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Centered Hermitian Data: 2D

e Implicit centered convolutions are faster in higher dimensions:
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e And uses (2/3)%7! the memory in d dimensions.
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Example: 2D pseudospectral Navier—Stokes

e These routines are available in the open-source package FFTW++

e We need to compute:

80_6: — —u-Vw = —(ZAXVV_2W>'VWJ

which appears in Fourier space as

ﬁwk Z pqu py%&
WpWg-

k=p+q

e The right-hand side of this equation may be computed as

ImplicitHConvolution2(ik,w,ik,w,ik,w/k*, —ik.w/k?).
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Optimal Problem Sizes

e F'F'T's are faster for highly composite problem sizes:

N =2" N = 3" etc., with N = 2" optimal.
e “2/3” padding: 341, 683, 1365 etc
— FF'Ts are of size N = 512, 1024, 2048, etc.
e Phase-shift dealiasing: 2" — 1
~ FFTs are of length 2" 1,
e Implicit padding: 2" — 1.

— sub-transforms are of size 27 1.
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Ternary Convolutions
e The ternary convolution of three vectors f, g, and h is

«(F.G.H),= Y  F,GyH 0arpren
a,b,ce{0,....N—1}

o Computing the transfer function for Z; = N°} . w(z )
requires computing the Fourier transform of w?.
e This requires a centered Hermitian ternary convolution:
*(Fa Ga H)k — Z Fy GbHcda+b+c,n-
a,b,ce{—%—i—l,...,%—l}
e Correctly dealiasing requires a “2/4” padding rule.

e Computing Z4 using a 2048 x 2048 pseudospectral mode
simulation retains a maximum physical wavenumber of only 512.

27



Centered Hermitian Ternary Convolutions: 1D

e The 1D implicit ternary convolution is as fast as explicit
padding:

III [ IIIIIIII [ IIIIIIII T TTTT T TTTT

25
— o — explicit
Py —a— implicit
0
S
N———"
T
N
o0
O
r—
= 15+7
<D uil T
= \
= \
\
]_O T D>< b T ]
llll—— - | lllllll 1 1Ll

102 103 10* 10° 106
m

e And has a comparable memory footprint.
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Centered Hermitian Ternary Convolutions: 2D

e Implicit centered ternary convolutions are faster in higher 2D:

90 [T TT I I T T TTT I I _0
7
7
i o & -
— o — explicit /

" 0 |- e y-pruned // —
= - —a— implicit / -
~—~
™

| lllllll

107 10°
m

e And use (1/2)%! the memory in d dimensions.
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FFTW++

e A C++ implementation, (FFTW++ LGPL) is available at
http://fftwpp.sourceforge.net/.

o Fastest Fourier Transform in the West (http://fftw.org/)
provides sub-transforms.

e Future work: parallelize FFTW++.

e Available in FFTW++:

— Non-centered convolutions in 1D, 2D, and 3D,
— Centered Hermitian convolutions in 1D, 2D, and 3D,

— Centered Hermitian ternary convolutions in 1D, 2D.
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Conclusion

e Implicitly padded fast convolutions eliminate aliasing errors.

o Implicit padding uses (p/q)%! the memory of explicit
d-dimensional “p/q” padding.

e Computational speedup from skipping a bit-reversal in the FF'T
and pruning FF'T's efficiently.

e Eixpanding discontiguously is easier to program.

e Efficient Dealiased Convolutions without Padding, SIAM
Journal on Scientific Computing, 33, 386-406 (2011).
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