On the Calculation of Higher-Order Convolutions

Malcolm Roberts and John Bowman

University of Alberta

December 11, 2011

Outline

Pseudospectral simulations

Generalized convolutions

Dealiasing

Error terms

Malcolm Roberts and John Bowman

Pseudospectral simulations

- ▶ We wish to solve the Navier–Stokes equations numerically.
- ► The incompressible 2D vorticity formulation

$$\frac{\partial \omega}{\partial t} + (u \cdot \nabla) \, \omega = \nu \nabla^2 \omega$$

is Fourier-transformed into

$$\frac{\partial \omega_k}{\partial t} = \sum_{p+q=k} \frac{\epsilon_{kpq}}{q^2} \omega_p^* \omega_q^* - \nu k^2 \omega_k$$

$$\epsilon_{kpq} = (\hat{z} \cdot p imes q) \delta(k + p + q)$$

► The quadratic nonlinearity becomes a convolution.

Malcolm Roberts and John Bowman

Cubic nonlinearities

Cubic terms

$$\frac{\partial u}{\partial t} = u^3$$

become ternary convolutions

$$\frac{\partial U_k}{\partial t} = *(U_k, U_k, U_k)$$

The ternary convolution is defined as

$$*(F,G,H)_{k} = \sum_{a,b,c} F_{a}G_{b}H_{c}\,\delta_{k,a+b+c}.$$

 Cubic nonlinearities appear in, for example, the non-linear Schrödinger equation.

Malcolm Roberts and John Bowman University of Alberta

Generalized convolutions

Definition The *n*-ary convolution is given by

$$*(F^1,\ldots,F^n)_k=\sum_{a_1,\ldots,a_n}F^1_{a_1}\ldots F^n_{a_n}\,\delta_{k,a_1+\cdots+a_n}.$$

Theorem

$$\mathcal{F}^{-1}[*(\mathcal{F}^1,\ldots,\mathcal{F}^n)] = \prod_{i=1}^n \mathcal{F}^{-1}[\mathcal{F}^i].$$

Malcolm Roberts and John Bowman

Generalized convolutions

Proof Denote roots of unity $e^{2\pi i/N} = \zeta_N$. Let $C_k = \sum_{a_1,\dots,a_n} F_{a_1}^1 \dots F_{a_n}^n \delta_{k,a_1+\dots+a_n}$. $\mathcal{F}^{-1}[C]_{x} = \frac{1}{N} \sum_{i} \zeta_{N}^{xk} \sum_{i} F_{a_{1}}^{1} \dots F_{a_{n}}^{n} \delta_{k,a_{1}+\dots+a_{n}}$ $=\frac{1}{N}\sum_{k}\zeta_{N}^{x(a_{1}+\cdots+a_{n})}F_{a_{1}}^{1}\ldots F_{a_{n}}^{n}$ $=\prod_{n=1}^{n}\frac{1}{N}\sum_{i}\zeta_{N}^{xa_{i}}F_{a_{i}}^{i}$ $= \prod \mathcal{F}^{-1} [\mathcal{F}^i]_{\mathsf{v}}.$ i=1

Dealiasing *n*-ary convolutions

- Direct convolutions require $\mathcal{O}(N^2)$ operations.
- ▶ FFT-based convolutions require $O(N \log N)$ operations.
- However, FFTs treat input data as periodic: this produces aliasing errors.
- We remove these by implicitly padding the data with zeroes.

Dealiasing *n*-ary convolutions

For non-centered input data,

►
$$F^i = \{F^i_k, k \in (0, ..., m-1)^d\},$$

- Pad from $(0, \ldots, m-1)^d$ to length $(0, \ldots, nm-1)^d$.
- Explicit padding memory use: $n^{d+1}m^d$,
- Implicit padding memory use: $n^2 m^d$,
- Complexity: $n(n+1)\frac{n^d-1}{n-1} Km^d \log nm$.

Dealiasing *n*-ary convolutions

For Hermitian-symmetric centered input data,

►
$$F^i = \{F^i_k, k \in (-m+1, ..., m-1)^d\},\$$

- $F_{-k} = F_k^*$, where the asterisk is complex conjugation,
- ▶ Pad from $\{0, m-1\} \times \{-m+1, m-1\}^{d-1}$ to $\{0, nm-1\} \times \{-m+1, nm-1\}^{d-1}$.
- Explicit padding memory use: $\frac{n(n+1)^d}{2}m^d$,
- Implicitly padding memory use: $n(n+1)2^{d-2}m^d$,
- Complexity: $\frac{1}{2}(n+1)^2 \frac{(n+1)^d 2^d}{n-1} Km^d \log nm$.

Exposition of implicitly padded 2D ternary convolutions

Malcolm Roberts and John Bowman

Calculating using binary convolutions

n-ary convolutions are very expensive.

- Can we use binary convolutions?
- For periodic data, non-centered data, and infinite-length input data,

$$*(F, G, H) = (F * G) * H.$$

For *n*-ary non-centered convolutions, using binary convolutions is better:

- requires only $(n+2)m^d$ memory,
- has complexity $(n-1)6(2^d-1) Km^d \log m$.

Calculating using binary convolutions: proof

Theorem

 $*(F^1, \ldots, F^n)$, $F^i \in \ell^2$ can be computed as binary convolutions.

Proof.

Centered data

Theorem For centered data, $*(F, G, H) \neq (F * G) * H$. Proof.

$*(F_a, G_b, H_c)_1$			$(F_a * (G_b * H_c)_{\widehat{k}})_1$			
а	b	с	а	ĥ	b	с
1	0	0	1	0	0	0
0	1	0	0	1	1	0
0	0	1	0	1	0	1
1	1	-1	1	0	1	-1
1	-1	1	1	0	-1	1
-1	1	1	N/A			

Moreover,
$$F * (G * H) \neq (F * G) * H$$
.

Malcolm Roberts and John Bowman

Centered data

We can reduce the memory use by multiplying arrays in pairs.

For 1D convolutions,

- memory use is reduced to $\frac{3}{2}nm$,
- computational complexity is unchanged.
- ► Not applicable to multi-dimensional transforms.

Malcolm Roberts and John Bowman

- ► The full *n*-ary convolution is very expensive.
- Using binary convolutions to calculate an *n*-ary convolution is cheap, but misses terms.
- The missed terms are far from the origin.
- ► If the input data decreases with |k|, binary convolutions might produce reasonable results.

To visualize which terms are missing in F * (G * H), first consider the convolution of F and G:

 $*(F, G, H)_0$ and $((F * G) * H)_0$ agree.

Malcolm Roberts and John Bowman

$$*(F, G, H)_{m-1}$$
 and $((F * G) * H)_{m-1}$ disagree.

Malcolm Roberts and John Bowman

Conclusions

- Pseudospectral simulations with higher nonlinearities involve computing *n*-ary convolutions.
- Non-centered *n*-ary convolutions can be computed via binary convolutions.
- Centered *n*-ary convolutions cannot be computed via binary convolutions.
- The difference error occurs at high wavenumbers; it may be possible to bound the error.

Future Work

- Parallelize the implicit convolution.
- ► Optimize parallel routines for Navier–Stokes simulators.
- Determine if reduced-memory *n*-ary convolutions are worthwhile for large values of *n*.
- ► Develop code for special cases, such as self-convolution.

Resources

```
FFTW++:
http://fftwpp.sourceforge.net
```

Asymptote: http://asymptote.sourceforge.net

Malcolm Roberts: http://www.math.ualberta.ca/~mroberts