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Pseudospectral simulations

I We wish to solve the Navier–Stokes equations numerically.

I The incompressible 2D vorticity formulation

∂ω

∂t
+ (u · ∇)ω = ν∇2ω

is Fourier-transformed into

∂ωk

∂t
=
∑

p+q=k

εkpq
q2

ω∗pω
∗
q − νk2ωk

εkpq = (ẑ · p × q)δ(k + p + q)

I The quadratic nonlinearity becomes a convolution.
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Cubic nonlinearities

I Cubic terms
∂u

∂t
= u3

become ternary convolutions

∂Uk

∂t
= ∗(Uk ,Uk ,Uk)

I The ternary convolution is defined as

∗(F ,G ,H)k =
∑
a,b,c

FaGbHc δk,a+b+c .

I Cubic nonlinearities appear in, for example, the non-linear
Schrödinger equation.
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Generalized convolutions

Definition
The n-ary convolution is given by

∗
(
F 1, . . . ,F n

)
k

=
∑

a1,...,an

F 1
a1
. . . F n

an δk,a1+···+an .

Theorem

F−1
[
∗
(
F 1, . . . ,F n

)]
=

n∏
i=1

F−1
[
F i
]
.
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Generalized convolutions

Proof.
Denote roots of unity e2πi/N = ζN .
Let Ck =

∑
a1,...,an

F 1
a1
. . . F n

anδk,a1+···+an .

F−1[C ]x =
1

N

∑
k

ζxkN
∑

a1,...,an

F 1
a1
. . . F n

anδk,a1+···+an

=
1

N

∑
a1,...,an

ζ
x(a1+···+an)
N F 1

a1
. . . F n

an

=
n∏

i=1

1

N

∑
ai

ζxaiN F i
ai

=
n∏

i=1

F−1
[
F i
]
x
.
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Dealiasing n-ary convolutions

I Direct convolutions require O(N2) operations.

I FFT-based convolutions require O(N logN) operations.

I However, FFTs treat input data as periodic: this produces
aliasing errors.

I We remove these by implicitly padding the data with
zeroes.
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Dealiasing n-ary convolutions

For non-centered input data,

I F i = {F i
k , k ∈ (0, . . . ,m − 1)d},

I Pad from (0, . . . ,m − 1)d to length (0, . . . , nm − 1)d .

I Explicit padding memory use: nd+1md ,

I Implicit padding memory use: n2md ,

I Complexity: n(n + 1)nd−1
n−1 Kmd log nm.
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Dealiasing n-ary convolutions

For Hermitian-symmetric centered input data,

I F i = {F i
k , k ∈ (−m + 1, . . . ,m − 1)d},

I F−k = F ∗k , where the asterisk is complex conjugation,

I Pad from {0,m − 1} × {−m + 1,m − 1}d−1 to
{0, nm − 1} × {−m + 1, nm − 1}d−1.

I Explicit padding memory use: n(n+1)d

2
md ,

I Implicitly padding memory use: n(n + 1)2d−2md ,

I Complexity: 1
2
(n + 1)2 (n+1)d−2d

n−1 Kmd log nm.
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Exposition of implicitly padded 2D ternary

convolutions

{∗(F,G,H)k}m−1
k=0
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Calculating using binary convolutions

n-ary convolutions are very expensive.

I Can we use binary convolutions?

I For periodic data, non-centered data, and infinite-length
input data,

∗(F ,G ,H) = (F ∗ G ) ∗ H .

For n-ary non-centered convolutions, using binary convolutions
is better:

I requires only (n + 2)md memory,

I has complexity (n − 1)6(2d − 1)Kmd logm.
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Calculating using binary convolutions: proof

Theorem
∗(F 1, . . . ,F n), F i ∈ `2 can be computed as binary
convolutions.

Proof.

∗
(
F 1, . . . ,F n

)
k

=
∑

a1,...,an∈Z
F 1
a1
. . . F n

anδa1+···+an,k

=
∑

a1,...,an∈Z
F 1
a1
. . . F n

anδa1+···+an−1,k̂
δan+k̂,k

=
∑

k̂,an∈Z

F n
anδan+k̂,k

∑
a1,...,an−1∈Z

F 1
a1
. . . F n−1

an−1
δa1+···+an−1,k̂

=
[
∗
(
F 1, . . . ,F n−1) ∗ F n

]
k
.
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Centered data

Theorem
For centered data, ∗(F ,G ,H) 6= (F ∗ G ) ∗ H .

Proof.

∗(Fa,Gb,Hc)1 (Fa ∗ (Gb ∗ Hc)k̂)1
a b c a k̂ b c

1 0 0 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 1 0 1
1 1 -1 1 0 1 -1
1 -1 1 1 0 -1 1
-1 1 1 N/A

Moreover, F ∗ (G ∗ H) 6= (F ∗ G ) ∗ H .
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Centered data

We can reduce the memory use by multiplying arrays in pairs.

For 1D convolutions,

I memory use is reduced to 3
2
nm,

I computational complexity is unchanged.

I Not applicable to multi-dimensional transforms.
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{fn}N−1
n=0 {gn}N−1

n=0 {hn}N−1
n=0

{fn}N−1
n=0 {Fk}2N−1

k=0 , k odd {gn}N−1
n=0 {Gk}2N−1

k=0 , k odd {hn}N−1
n=0

{fn}N−1
n=0 {FkGk}2N−1

k=0 , k odd {gn}N−1
n=0 {hn}N−1

n=0

{fn}N−1
n=0 {FkGk}2N−1

k=0 , k odd {gn}N−1
n=0 {Hk}N−1

n=0 , k odd {hn}N−1
n=0

{fn}N−1
n=0 {gn}N−1

n=0 {FkGkHk}2N−1
k=0 , k odd {hn}N−1

n=0

{fn}N−1
n=0 F−1{FkGkHk}2N−1

k=0 , k odd {gn}N−1
n=0 {hn}N−1

n=0

F−1{FkGkHk}2N−1
k=0 , k odd {gn}N−1

n=0 {Fk}2N−1
k=0 , k even {hn}N−1

n=0

{Gk}2N−1
k=0 , k even F−1{FkGkHk}2N−1

k=0 , k odd {Fk}2N−1
k=0 , k even {hn}N−1

n=0

F−1{FkGkHk}2N−1
k=0 , k odd {FkGk}2N−1

k=0 , k even {hn}N−1
n=0

{Hk}2N−1
k=0 , k even F−1{FkGkHk}2N−1

k=0 , k odd {FkGk}2N−1
k=0 , k even

F−1{FkGkHk}2N−1
k=0 , k odd {FkGkHk}2N−1

k=0 , k even

F−1{FkGkHk}2N−1
k=0 , k even F−1{FkGkHk}2N−1

k=0 , k odd

{∗(f, g, h)}2N−1
n=0
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Error terms

I The full n-ary convolution is very expensive.

I Using binary convolutions to calculate an n-ary
convolution is cheap, but misses terms.

I The missed terms are far from the origin.

I If the input data decreases with |k |, binary convolutions
might produce reasonable results.
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Error terms

To visualize which terms are missing in F ∗ (G ∗ H), first
consider the convolution of F and G :

G

F

(F ∗G)m−1

(F ∗G)m/2

(F ∗G)0

(F ∗G)−m/2

(F ∗G)−m+1
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Error terms

∗(F ,G ,H)0 and ((F ∗ G ) ∗ H)0 agree.
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Error terms

∗(F ,G ,H)m−1 and ((F ∗ G ) ∗ H)m−1 disagree.
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Conclusions

I Pseudospectral simulations with higher nonlinearities
involve computing n-ary convolutions.

I Non-centered n-ary convolutions can be computed via
binary convolutions.

I Centered n-ary convolutions cannot be computed via
binary convolutions.

I The difference error occurs at high wavenumbers; it may
be possible to bound the error.
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Future Work

I Parallelize the implicit convolution.

I Optimize parallel routines for Navier–Stokes simulators.

I Determine if reduced-memory n-ary convolutions are
worthwhile for large values of n.

I Develop code for special cases, such as self-convolution.
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Resources

FFTW++:
http://fftwpp.sourceforge.net

Asymptote:
http://asymptote.sourceforge.net

Malcolm Roberts:
http://www.math.ualberta.ca/~mroberts
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