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Convolutions

e The convolution of the functions f and g is

(gt / F(r)glt - 7)d

o For example, if f = g = x(—1.1)(%)

e Then f * g is




Applications

e Out-of-focus images are a convolution:
— the actual image is convolved with the aperture opening.
e Image filtering:

— Sobel edge detection is a convolution of the image with a
oradient stencil.

e Digital signal processing:
— e.g. for low- and high-pass filters.

e Correlation analysis.

e The Lucas—Lehmer primality test uses fast convolutions.
— Usetul for testing Mersenne primes.

e Pseudospectral simulations of fluids:

— (u - V)u is a convolution in Fourier space.



Discrete Convolutions

e Applications use a discrete linear convolution:

e Calculating {(f * g)n,}" takes O(N?) operations.

e The convolution theorem states that convolutions are a
multiplications in Fourier space:

F(f*g)=F(f)Fg)
where F(f)p = S0 ek £ is the Fourier transform of {f,}.

e A fast Fourier transform (FFT) of length N requires K N log, N
multiplications [Gauss 1866], [Cooley & Tukey 1965].

e Convolving using FFTs requires 3K N log, N operations.



Cyclic and Linear Convolutions

e Fourier transforms map periodic data to periodic data.

o Thus, FF(f) F(g)] is a discrete cyclic convolution,

where the vectors f and ¢ have period N.

e The difference between linear and cyclic convolutions,

megn m megn m T Z fmgn m+N

m=0 m=n-+1

is called the aliasing error.



Dealiasing via Explicit Zero-Padding

e The cyclic and linear convolutions are equal if we pad f with
ZET0S:

f — (f07f17° . 7fN—27fN—17,07° . 70,)
N

e Convolving these padded arrays takes 6 X N log, 2N operations,

e and 27 times the memory, where d is the dimension.

e Memory size and CPU speed have increased much faster than
memory bandwidth; this is the von-Neumann bottleneck.

e Explicit zero-padding seems wasteful.



Phase-shitt Dealiasing

e Another possibility is to use a phase shift [Canuto et al. 2006].

e Define the shifted Fourier transform of f to be

= F/?(f) — e%k<n+A>fna

n

=

I
o

e Then, setting A = 7/2, one has

N-—1
1
f*Ag FA FAGA megn m Z fmgn—m+N-

m=0 m=n-+1

which has a dealiasing error with opposite sign.
e Thus, we can calculate f * g by from two periodic convolutions.

e This requires 6 /X N log, N operations.



Implicit Padding

e Suppose that we want to take a Fourier transform of

(£ 13201 with f, =0ifn > N

n=0 >

e The discrete Fourler transform is a sum:

2N—-1

n=0

e Since f, = 01if n > N, this is just

N—-1

F(f k= Z e En .

n=0
e This is not a FF'T, and cannot be done in O(N log, N).



Implicit Padding

e However, if we calculate even and odd terms separately, we get

N-1 N-1
F(Hlaw=)_ ex™fn, Flflan=ex Y ex™f,
n=0 n=0

which are FF'Ts.
e The computational complexity is 6 K Nloga N /2.

e Since Fourier-transformed data is of length 2N, there are no
Memory savings.
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e There is one advantage:

the work buffer is separate from the data butffer. 10



Implicit Padding: speed

e The algorithms are comparable in speed:
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e Ours is much more complicated.
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Implicit Convolutions in Higher Dimensions

e 2D fast convolutions involve a series of FF'Ts, once for each
dimension.

e The first FF'T produce needs a separate (but non-contiguous)
array:

xFFT
L

k., even k., odd

e y-F'F'T's are done using a 1D work array:

yFET
A

k, odd
k, even

k., even k., odd



Implicit Convolutions in Higher Dimensions

e The transformed arrays are multiplied:

Fy: ky even Fy: k, odd
| ||
X
Gy ky even Gy: ky odd
| || |
FGy: kyeven FGy: K, odd

e Once we have Fj.G., we take the inverse transtorm to get f * g:

yFFT ™!
(.\

xFFT-!

k., even k., odd

e The resulting algorithm needs half the memory:.

e The operation count is 6K N log N/2.
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Alternatives

e The memory savings could be achieved more simply by using
conventional padded transforms.

However, this requires copying more data, which is slow.

e Pruning: note that half of the FF'Ts in the z-direction are on
zero-data.

We can skip such transforms:

xFFT yFET

This is actually slower for large data sets due to memory-striding
1Ssues.
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Implicit Padding in Higher Dimensions

e Implicit padding is faster in two dimensions:
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Implicit Padding in Higher Dimensions

e The algorithm is easily extended to three dimensions:
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Hermitian Data

o If {f,} 7' is real-valued, then

F(H={B5" v

and F_;, = F;. Such data is called Hermitian.
e Real-to-complex Fourier take K % log % multiplies.

e Zero-padding Hermitian data increases the array length by 50%

(i.e. 2/3 padding.)

e Phase-shifting is slower than explicit padding for Hermitian
data.




Hermitian Data

e The 1D implicit convolution is comparable to explicit padding:
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Hermitian Data

e And faster in higher dimensions:
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Optimal Problem Sizes

e Our main use for this algorithm is pseudo-spectral simulations.

e F'F'T's are faster for highly composite problem sizes:
- N=2" N =3" etc., with N = 2" optimal.

e 2/3 padding: 341, 683, 1365 etc
— FFTs have N = 512, 1024, 2048, etc.

e Phase-shift dealiasing: 2"
— FF'T's are the same size.

e Implicit padding: 2" — 1.

— sub-transforms are of size 27 1.

e Implicit padding is optimal for Mersenne-prime sized problem
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Conclusion

e Implicitly padded fast convolutions eliminate aliasing errors.

e They use less memory and are faster than explicit zero-padding
or phase-shift dealiasing.

e Expanding into discontiguous arrays makes for easier
programming.

e A C++ implementation under the LGPL is available at
http://fftwpp.sourceforge.net/

e Uses SIMD routines when compiled with the Intel compiler.

e Uses the Fastest Fourier Transform in the West
(http://fftw.org/) for sub-transforms.

FFTW
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