
The Fastest Convolution in the West

Malcolm Roberts (University of Alberta)

Acknowledgements: John Bowman

May 20, 2010

www.math.ualberta.ca/∼mroberts

1



Outline

•Convolution

– Definition

– Applications

•Fast Convolutions

– The Convolution Theorem

•Aliasing Errors

– Zero-padding

– Phase-shift dealiasing

• Implicit Padding

– In one dimension

– In higher dimensions

•Hermitian Convolutions
2



Convolutions

•The convolution of the functions f and g is

(f ∗ g)(t) =

∫ ∞

−∞

f(τ )g(t− τ ) dτ.

•For example, if f = g = χ(−1,1)(t)

•Then f ∗ g is

3



Applications

•Out-of-focus images are a convolution:

– the actual image is convolved with the aperture opening.

• Image filtering:

– Sobel edge detection is a convolution of the image with a
gradient stencil.

•Digital signal processing:

– e.g. for low- and high-pass filters.

•Correlation analysis.

•The Lucas–Lehmer primality test uses fast convolutions.

– Useful for testing Mersenne primes.

•Pseudospectral simulations of fluids:

– (u · ∇)u is a convolution in Fourier space.
4



Discrete Convolutions

•Applications use a discrete linear convolution:

(f ∗ g)n =
n∑

m=0

fmgn−m

•Calculating {(f ∗ g)n}
N−1
n=0 takes O(N 2) operations.

•The convolution theorem states that convolutions are a
multiplications in Fourier space:

F(f ∗ g) = F(f)F(g)

where F(f)k =
∑N−1

n=0 e
2πi
N knfn is the Fourier transform of {fn}.

•A fast Fourier transform (FFT) of lengthN requiresKN log2N
multiplications [Gauss 1866], [Cooley & Tukey 1965].

•Convolving using FFTs requires 3KN log2N operations.

5



Cyclic and Linear Convolutions

•Fourier transforms map periodic data to periodic data.

•Thus, F−1[F(f)F(g)] is a discrete cyclic convolution,

(f ∗N g)n
.
=

N−1∑

m=0

fmN
g(n−m)N ,

where the vectors f and g have period N .

•The difference between linear and cyclic convolutions,

N−1∑

m=0

fmgn−m =

n∑

m=0

fmgn−m +

N−1∑

m=n+1

fmgn−m+N ,

is called the aliasing error.

6



Dealiasing via Explicit Zero-Padding

•The cyclic and linear convolutions are equal if we pad f with
zeros:

f = (f0, f1, . . . , fN−2, fN−1, 0, . . . , 0︸ ︷︷ ︸
N

)

•Convolving these padded arrays takes 6KN log2 2N operations,

• and 2d times the memory, where d is the dimension.

•Memory size and CPU speed have increased much faster than
memory bandwidth; this is the von-Neumann bottleneck.

•Explicit zero-padding seems wasteful.

7



Phase-shift Dealiasing

•Another possibility is to use a phase shift [Canuto et al. 2006].

•Define the shifted Fourier transform of f to be

F∆ .
= F∆

k (f) =
N−1∑

n=0

e
2πi
N k(n+∆)fn,

•Then, setting ∆ = π/2, one has

f ∗∆ g
.
= F∆−1 (

F∆G∆
)
=

n∑

m=0

fmgn−m −
N−1∑

m=n+1

fmgn−m+N .

which has a dealiasing error with opposite sign.

•Thus, we can calculate f ∗g by from two periodic convolutions.

•This requires 6KN log2N operations.

8



Implicit Padding

• Suppose that we want to take a Fourier transform of

{fn}
2N−1
n=0 , with fn = 0 if n ≥ N

•The discrete Fourier transform is a sum:

F(f)k =
2N−1∑

n=0

e
2πi
2N knfn.

• Since fn = 0 if n ≥ N , this is just

F(f)k =
N−1∑

n=0

e
2πi
2N knfn.

•This is not a FFT, and cannot be done in O(N log2N).

9



Implicit Padding

•However, if we calculate even and odd terms separately, we get

F(f)2k =
N−1∑

n=0

e
2πi
N knfn, F(f)2k+1 = e

ik
2N

N−1∑

n=0

e
2πi
N knfn,

which are FFTs.

•The computational complexity is 6KNlog2N/2.

• Since Fourier-transformed data is of length 2N , there are no
memory savings.

fn

Fk

k even

Fk

k odd

•There is one advantage:

the work buffer is separate from the data buffer. 10



Implicit Padding: speed

•The algorithms are comparable in speed:

10−5

10−4

10−3

10−2

10−1

ti
m

e
(s

ec
)

102 103 104 105 106

m

explicit

implicit

•Ours is much more complicated.
11



Implicit Convolutions in Higher Dimensions

• 2D fast convolutions involve a series of FFTs, once for each
dimension.

•The first FFT produce needs a separate (but non-contiguous)
array:

kx even kx odd

xFFT

• y-FFTs are done using a 1D work array:

kx even kx odd

k
y
ev
en

k
y
o
d
d

yFFT

12



Implicit Convolutions in Higher Dimensions

•The transformed arrays are multiplied:

Fk: ky even Fk: ky odd

×
Gk: ky even Gk: ky odd

=
FkGk: ky even FkGk: ky odd

•Once we have FkGk, we take the inverse transform to get f ∗ g:

kx even

F ∗G

kx odd

F ∗G

yFFT−1

xFFT−1

f ∗ g

•The resulting algorithm needs half the memory.

•The operation count is 6KN logN/2.
13



Alternatives

•The memory savings could be achieved more simply by using
conventional padded transforms.

However, this requires copying more data, which is slow.

•Pruning: note that half of the FFTs in the x-direction are on
zero-data.

We can skip such transforms:

xFFT yFFT

This is actually slower for large data sets due to memory-striding
issues.

14



Implicit Padding in Higher Dimensions

• Implicit padding is faster in two dimensions:

10−3

10−2

10−1

100

101
ti

m
e

(s
ec

)

102 103

m

explicit

implicit

y-pruned

15



Implicit Padding in Higher Dimensions

•The algorithm is easily extended to three dimensions:

10−4

10−3

10−2

10−1

100

101

ti
m

e
(s

ec
)

101 102

m

explicit

xz-pruned

implicit

16



Hermitian Data

• If {fn}
N−1
n=0 is real-valued, then

F(f) = {Fk}
N/2
k=−N/2

and F−k = F k. Such data is called Hermitian.

•Real-to-complex Fourier take KN
2 log

N
2 multiplies.

•Zero-padding Hermitian data increases the array length by 50%
(i.e. 2/3 padding.)

•Phase-shifting is slower than explicit padding for Hermitian
data.

17



Hermitian Data

•The 1D implicit convolution is comparable to explicit padding:

10−6

10−5

10−4

10−3

10−2

10−1

ti
m

e
(s

ec
)

102 103 104 105 106

m

explicit

implicit

18



Hermitian Data

•And faster in higher dimensions:

10−3

10−2

10−1

100

101

ti
m

e
(s

ec
)

102 103

m

explicit

implicit

y-pruned

19



Optimal Problem Sizes

•Our main use for this algorithm is pseudo-spectral simulations.

•FFTs are faster for highly composite problem sizes:

– N = 2n, N = 3n, etc., with N = 2n optimal.

• 2/3 padding: 341, 683, 1365 etc

– FFTs have N = 512, 1024, 2048, etc.

•Phase-shift dealiasing: 2n

– FFTs are the same size.

• Implicit padding: 2n − 1.

– sub-transforms are of size 2n−1.

• Implicit padding is optimal for Mersenne-prime sized problem

20



Conclusion

• Implicitly padded fast convolutions eliminate aliasing errors.

•They use less memory and are faster than explicit zero-padding
or phase-shift dealiasing.

•Expanding into discontiguous arrays makes for easier
programming.

•A C++ implementation under the LGPL is available at
http://fftwpp.sourceforge.net/

•Uses SIMD routines when compiled with the Intel compiler.

•Uses the Fastest Fourier Transform in the West
(http://fftw.org/) for sub-transforms.

21



References
[Canuto et al. 2006] C. Canuto, M. Hussaini, A. Quarteroni, & T. Zang, Spectral Methods: Fundamentals in Single Domains,

Scientific Computation, Springer, Berlin, 2006.

[Cooley & Tukey 1965] J. W. Cooley & J. W. Tukey, Mathematics of Computation, 19:297, 1965.

[Gauss 1866] C. F. Gauss, “Nachlass: Theoria interpolationis methodo nova tractata,” in Carl Friedrich Gauss Werke,
volume 3, pp. 265–330, Königliche Gesellschaft der Wissenschaften, Göttingen, 1866.


