The Fastest Convolution in the West

John Bowman and Malcolm Roberts

University of Alberta

June 16, 2010

www.math.ualberta.ca/~mroberts

Outline

e Convolution
— Definition
— Applications

e [ast Convolutions
— The Convolution Theorem

e Aliasing Errors
— Zero-padding
— Phase-shift dealiasing
— Implicit Padding
e Centered Hermitian Convolutions

e Ternary Convolutions

Convolutions

e The convolution of the functions f and g is

(gt / F(r)glt -) d

o For example, if f =g = x(_1.1)(t)

e Then f * g is:

Applications

e Out-of-focus images are a convolution:
— the actual image is convolved with the aperture opening.
e Image filtering:

— Sobel edge detection is a convolution of the image with a
oradient stencil.

e Digital signal processing:
— e.g. for low- and high-pass filters.

e Correlation analysis.

e The Lucas—Lehmer primality test uses fast convolutions.
— Usetul for testing Mersenne primes.

e Pseudospectral simulations of fluids:

— (u - V)u is a convolution in Fourier space.

Discrete Convolutions

e Applications use a discrete linear convolution:

(f * g)n — Z fmgn—m-

e Calculating {(f * g),}\— takes O(N?) operations.

e The convolution theorem states that convolutions are
multiplications when Fourier-transformed:

[f xg| = FIf] Flg]
where {F[f]}r = Zn 0 € W'k £ is the Fourier transform of f.

e A fast Fourier transform (FFT) of length N requires K N log, N
multiplications [Gauss 1866], [Cooley & Tukey 1965].

e Convolving using FFTs requires 3K N log, N operations.

Cyclic and Linear Convolutions

e Fourier transforms map periodic data to periodic data.

o Thus, F ! [F[f] Flg] is a discrete cyclic convolution,

N—-1
(f *N g)n = Z fm(modN)g(n—m)(modN)°

m=0

e The difference between linear and cyclic convolutions,

n N—-1
(f N g)n — Z fmgn—m + Z fmgn—m+N;
m=0 m=n-+1

is called the aliasing error.

Dealiasing via Explicit Zero-Padding

e The cyclic and linear convolutions are equal if we pad f with
ZET0S:

{fn 2N ! (f07f17°°°7fN—27fN—1707°°°70)

N’
N
e Then,
N 2N—-1 N
<f Kon §>n — Z fm(modZN)g(n—m)(monN)a
m=0
N—-1

~

— fmg(n—m)(mod 2N)>

— fmgn—m-

Dealiasing via Explicit Zero-Padding

{fn j;[ol {gn ¢7]:[01
{fo}nzo {0} {gn}nz0 {0},
Y Y
{ F}, f]—vo_l {Ge}ily!
{F.Gr}ito !
{(f *gfn 7]:[:_01
{(f *g)n 7]5:_01

e Convolving these padded arrays takes 6 X N log, 2N operations,

e and twice the memory of a circular convolution.

e CPU speed and memory size have increased much faster than
memory bandwidth; this is the von-Neumann bottleneck.

Phase-shitt Dealiasing

e The shifted Fourier transform [Patterson Jr & Orszag 1971] is

{.FA —% /{—I—A nfn

MZ

n=0
e Then, setting A = 1/2, one has
, N-—1
f SN ‘FA FAGA megn m Z fmgn—m+N;
m=n-+1

which has a dealiasing error with opposite sign.

e We recover f * g from two periodic convolutions:

frg=5(fxvg+fxg).

M|H

Phase-shitt Dealiasing

{fnfr—ol {gn}nz0
{Fi} {Gr} {F) (G}

L/

{FeGr} {FPGRY}
! !

{f *N 9} {f *A 9}
M

{f*g}

e We don’t need to copy data to a larger buffer first.
e Convolving these padded arrays takes 6 K NV log, N operations,
e The memory footprint is the same as explicit padding.

e Explicit padding is better if we need to add fewer than IV zeros.

Implicit Padding

e Suppose that we want to take a Fourier transform of

{2V with f, =0if n > N.

n=0 >

e The discrete Fourler transform is a sum:

2N—-1

F(f)k — Z 6_2_]\%]{77:7071-

n=0

e Since f, = 01if n > N, this is just

N—-1

F(f k= Z eI

n=0

e This is not a Fourier transform: the FFT algorithm does not

apply.

11

Implicit Padding

e However, if we calculate even and odd terms separately, we get

N—-1 N—-1
2mkn _Mkn 2mn
by, = E Jno Fokpr = E e N fpe VT,

which are Fourier transforms.

{fn r];[:_ol
!

(R keven {F), kodd

e The inverse i1s the sum of two Fourler transforms:

1 N—-1 N—-1
211 27m
Jn= N E NIy 4 eN E F2k:+1

e Since Fourier-transformed data is of length 2N, there are no
Memory savings.

Implicit Padding

e There is one advantage:

the work buffer is separate from the data butffer.

{Fk}kN:_Ol, k even {Fk}]kvz_ol, k odd {Gk},zf:_ol, k even {Gk},zf:_ol, k odd

.

{Fka}g:_Ol, k even {Fka}é\f:—()l’ kodd

1(f*9)n 7];[:_01

e The computational complexity is 6 K N logy N/2.

e By swapping arrays, we can use out-of-place transforms.

e The numerical error is similar to explicit padding.

13

Implicit Padding: speed

e The algorithms are comparable in speed:

_Ill [[IIIIIII [T TTTTTIT [T TTTTT [[IIII
10—1 = —o— explicit =
- | —— implicit]
1072 ¢ E
/N : -
O — -
S - :
=z - 1
- 107 E
= B i
1071 £ E
107 F E
lll | | lllllll | | lllllll | | lllllll | | llllll:—I
102 103 104 10° 10

N

e Ours is much more complicated.

14

Convolutions in Higher Dimensions

e An explicitly padded convolution in 2 dimensions requires 12N
padded FFTs, and 4 times the memory of a cyclic convolution.

f == f g | g
Y Y
F G
T
Fd
v

Jrxge—[fxg

15

Implicit Convolutions in Higher Dimensions

e Implicitly padded 2-dimensional convolutions are done by first
doing implicitly padded FFT's in the x direction:

/ g
FET{f} || FFT.{f} FFT. {9} || FFT.{g}
k, even k, odd k. even k, odd

e And then 2N one-dimensional convolutions in the y-direction:

FFT.{f} || FFT.{f} FFT.{g} EE g}
k., even k, odd k., even k, odd

e

FFT,.{f * g} |[FFT.{f * g}
k. even k; odd

Implicit Convolutions in Higher Dimensions

e We recover f x g by taking an inverse padded x-FFT"

FET{f * g} [FET{f * g}

k., even k, odd
L/
f*g

e An implicitly padded convolution in 2 dimensions requires only
9N padded FFTs,

e and only twice the memory of a cyclic convolution.

e The operation count is 6K N log N/2.

Alternatives

e The memory savings could be achieved more simply by using
conventional padded transforms.

e This requires copying data, which is slow.

e Half of the FF'T's in the z-direction are on zero-data.

e We can skip (“prune”) such transforms:

FFT,
FFT, >

|

e This is slower with large data sets due to memory-striding issues.

e Phase-shift dealiasing has the same memory footprint as “1/2”
explicit padding.

18

Implicit Padding in 2D

e Implicit padding is faster in two dimensions:

101 :_I T l I I I I 1T 171 I
- —o— explicit .
- | —a— implicit -
100 | —e— y-pruned —
) i i
o u i
~— 10—1 E_ —E
= . i
1072 =
1078 .

| | | 1 1 1 1 I | |
10° 10°
N

e And uses half the memory of explicit padding.

19

Implicit Padding in 3D

e The algorithm is easily extended to three dimensions:

I L l I I I I L I ?
101 3 =2
- | —e— explicit]
109 | | —=— implicit |
F | —e— xz-pruned 3
1L |
¥ - -
% -]
N~—7 - —
QS-) 102 = =
= . .
10_3 3 =
10_4 = =
| 1 1 1 | I | | | | 1 1 1 | I | |

10! 10°

N

e Implicit padding uses 1/4 the memory of explicit padding in 3D.

20

Centered Hermitian Data

e The input f is centered if {ﬁl}N/2 1 = {F/{}Nﬂ_1

n=—N/2+1 k=—N/2+1"

o If {f,} is real-valued, then F(f) is Hermitian:

F_ ;. = Fk
e The convolution of the centered arrays f and g is

N/2-1
(f * g)n — Z fpgn—p
p=n—N/2+1
e Padding centered data use a “2/3” rule:
{fn n—— N/2_|_1 (f—N/2—|—17 s f (ORI fN/Z—la,Oa < 70,)°
N/2

e Phase-shifting is slower than explicit padding for centered data.

21

Centered Hermitian Data: 1D

e The 1D implicit convolution is as fast as explicit padding:

JIIIII I I IIIIIII I T TTTTIT I T TTTTIT I T TTTITTHA

107t E . =

F | —e— explicit 3

- | —— implicit]

1072 ¢ E
A~ —]
8 L _
n -3 _
2 1073 = =
D) C _
g 4 I 7]
107° £ E

® lllll | | lllllll | | lllllll | | lllllll | | llllll‘l‘

107 10° 10 10° 10°
N

e And has a comparable memory footprint.

Centered Hermitian Data: 2D

e Implicit centered convolutions are faster in higher dimensions:

LT T T 711 l I I I 1T T TT I I I T T T A

101 = —o— explicit E

- | —a— implicit 3

- | —e— y-pruned -

10° & E

R - -

O — —

& u]

CD — -
N~—7 _1

2 107 & E

e N i

1072 ¢ E

107° ¢ E

E’_ N | I | | | 1 11 11 I | | | 1 1 1 _—T

107 10°
N

e And uses (2/3)%7! the memory in d dimensions.

Optimal Problem Sizes

e We use convolutions in pseudo-spectral simulations:

ou+u-Vu=—-VP+ vV

is advanced in Fourier space, with u - Vu calculated in x-space.

e F'F'T's are faster for highly composite problem sizes:
- N=2" N =3" etc., with N = 2" optimal.

e “2/3” padding: 341, 683, 1365 etc
— FF'Ts are of size N = 512, 1024, 2048, etc.

e Phase-shift dealiasing: 2" — 1
~ FFTs are of length 2" 1,

e Implicit padding: 2" — 1.

— sub-transforms are of size 27 1.

24

Ternary Convolutions
e The ternary convolution of three vectors f, g, and h is

* (f7 g, h>n — Z fa gb hc 5a+b+c,n-

a,b,ce{0,....N—1}

o Computing the transfer function for Z; = N°} . w(z)
requires computing the Fourier transform of w?.
e This requires a centered Hermitian ternary convolution:
* (fvga h)n — Z fa gb hc 5a—|—b—|—c,n-
a,b,ce{—%—i—l,...,%—l}
e Correctly dealiasing requires a “2/4” padding rule.

e Computing 7, using 2048 x 2048 pseudospectral modes
simulation retains a maximum physical wavenumber of only 512.

25

Centered Hermitian Ternary Convolutions: 1D

e The 1D implicit ternary convolution is as fast as explicit
padding:

-Hll I IIIIIIII I T TTTTI I UL I T T TTT

—o— explicit

—a— implicit

o[.
el
= 107° ¢ E

1074 E
10_5 | llllllll | llllllll | llllllll | IIIIIE
102 103 104 105 06
N

e And has a comparable memory footprint. 2%

Centered Hermitian Ternary Convolutions: 2D

e Implicit centered ternary convolutions are faster in higher 2D:

[T T 1] T T T T T T1 T T g
1l
i . . —s
101 = —e—-exph.m.t =
- | —a— implicit 3
[| —e— y-pruned -
0 _
o 107 E =
O : 3
n -]
N——" - —
O u i
g 101 = =
+ -]
1072 =
p 1 | I | | | | 1 1 1 1 I | | ;

10° 10°

N

e And use (1/2)%! the memory in d dimensions.

Conclusion

e Implicitly padded fast convolutions eliminate aliasing errors.

o Implicit padding uses (p/q)?~! the memory of explicit
d-dimensional “p/q” padding.

e Computational speedup from increased data locality and
pruning FFT’s.

e Eixpanding discontiguously is easier to program.

e “Efficient Dealiased Convolutions without Padding” submitted
to SIAM Journal on Scientific Computing.

e A C++ implementation under the LGPL 1is available at
http://fftwpp.sourceforge.net/.

e Fastest Fourier Transform in the West (http://fftw.org/)
provides sub-transforms.

FFTW

28

References

[Cooley & Tukey 1965] J. W. Cooley & J. W. Tukey, Mathematics of Computation, 19:297, 1965.

[Gauss 1866 C. F. Gauss, “Nachlass: Theoria interpolationis methodo nova tractata,” in Carl Friedrich Gauss
Werke, volume 3, pp. 265-330, Konigliche Gesellschaft der Wissenschaften, Gottingen, 1866.

[Patterson Jr & Orszag 1971] G. S. Patterson Jr & S. A. Orszag, Physics of Fluids, 14:2538, 1971.

