
The Fastest Convolution in the West

John Bowman and Malcolm Roberts

University of Alberta

June 16, 2010

www.math.ualberta.ca/∼mroberts

1



Outline

•Convolution

– Definition

– Applications

•Fast Convolutions

– The Convolution Theorem

•Aliasing Errors

– Zero-padding

– Phase-shift dealiasing

– Implicit Padding

•Centered Hermitian Convolutions

•Ternary Convolutions

2



Convolutions

•The convolution of the functions f and g is

(f ∗ g)(t) =

∫ ∞

−∞

f(τ )g(t− τ ) dτ.

•For example, if f = g = χ(−1,1)(t)

•Then f ∗ g is:

3



Applications

•Out-of-focus images are a convolution:

– the actual image is convolved with the aperture opening.

• Image filtering:

– Sobel edge detection is a convolution of the image with a
gradient stencil.

•Digital signal processing:

– e.g. for low- and high-pass filters.

•Correlation analysis.

•The Lucas–Lehmer primality test uses fast convolutions.

– Useful for testing Mersenne primes.

•Pseudospectral simulations of fluids:

– (u · ∇)u is a convolution in Fourier space.
4



Discrete Convolutions

•Applications use a discrete linear convolution:

(f ∗ g)n =
n∑

m=0

fmgn−m.

•Calculating {(f ∗ g)n}
N−1
n=0 takes O(N 2) operations.

•The convolution theorem states that convolutions are
multiplications when Fourier-transformed:

F [f ∗ g] = F [f ]F [g]

where {F [f ]}k =
∑N−1

n=0 e
−2πi
N knfn is the Fourier transform of f .

•A fast Fourier transform (FFT) of lengthN requiresKN log2N
multiplications [Gauss 1866], [Cooley & Tukey 1965].

•Convolving using FFTs requires 3KN log2N operations.

5



Cyclic and Linear Convolutions

•Fourier transforms map periodic data to periodic data.

•Thus, F−1[F [f ]F [g]] is a discrete cyclic convolution,

(f ∗N g)n
.
=

N−1∑

m=0

fm(modN)g(n−m)(modN).

•The difference between linear and cyclic convolutions,

(f ∗N g)n =
n∑

m=0

fmgn−m +

N−1∑

m=n+1

fmgn−m+N ,

is called the aliasing error.

6



Dealiasing via Explicit Zero-Padding

•The cyclic and linear convolutions are equal if we pad f with
zeros:

{f̃n}
2N−1
n=0 = (f0, f1, . . . , fN−2, fN−1, 0, . . . , 0︸ ︷︷ ︸

N

)

•Then,

(f̃ ∗2N g̃)n =
2N−1∑

m=0

f̃m(mod 2N)g̃(n−m)(mod 2N),

=

N−1∑

m=0

fmg̃(n−m)(mod 2N),

=

n∑

m=0

fmgn−m.

7



Dealiasing via Explicit Zero-Padding

{fn}
N−1
n=0 {gn}

N−1
n=0

{fn}
N−1
n=0 {0}N−1

n=0 {gn}
N−1
n=0 {0}N−1

n=0

{Fk}
2N−1
k=0 {Gk}

2N−1
k=0

{FkGk}
2N−1
k=0

{(f ∗ g)n}
N−1
n=0

{(f ∗ g)n}
N−1
n=0

•Convolving these padded arrays takes 6KN log2 2N operations,

• and twice the memory of a circular convolution.

•CPU speed and memory size have increased much faster than
memory bandwidth; this is the von-Neumann bottleneck.

8



Phase-shift Dealiasing

•The shifted Fourier transform [Patterson Jr & Orszag 1971] is

F∆ .
= {F∆[f ]}k =

N−1∑

n=0

e−
2πi
N (k+∆)nfn.

•Then, setting ∆ = 1/2, one has

f ∗∆ g
.
= F∆−1 (

F∆G∆
)
=

n∑

m=0

fmgn−m −
N−1∑

m=n+1

fmgn−m+N ,

which has a dealiasing error with opposite sign.

•We recover f ∗ g from two periodic convolutions:

f ∗ g =
1

2
(f ∗N g + f ∗∆ g) .

9



Phase-shift Dealiasing

{fn}
N−1
n=0 {gn}

N−1
n=0

{Fk} {Gk} {F∆
k } {G∆

k }

{FkGk} {F∆
k G∆

k }

{f ∗N g} {f ∗∆ g}

{f ∗ g}

•We don’t need to copy data to a larger buffer first.

•Convolving these padded arrays takes 6KN log2N operations,

•The memory footprint is the same as explicit padding.

•Explicit padding is better if we need to add fewer than N zeros.

10



Implicit Padding

• Suppose that we want to take a Fourier transform of

{fn}
2N−1
n=0 , with fn = 0 if n ≥ N.

•The discrete Fourier transform is a sum:

F(f)k =
2N−1∑

n=0

e−
2πi
2N knfn.

• Since fn = 0 if n ≥ N , this is just

F(f)k =
N−1∑

n=0

e−
2πi
2N knfn.

•This is not a Fourier transform: the FFT algorithm does not
apply.

11



Implicit Padding

•However, if we calculate even and odd terms separately, we get

F2k =

N−1∑

n=0

e−
2πi
N kn fn, F2k+1 =

N−1∑

n=0

e−
2πi
N kn fne

−2πi
N n,

which are Fourier transforms.

{fn}
N−1
n=0

{Fk}
N−1
k=0 , k even {Fk}

N−1
k=0 , k odd

•The inverse is the sum of two Fourier transforms:

fn =
1

N

(
N−1∑

k=0

e
2πi
N knF2k + e

πi
Nn

N−1∑

k=0

e
2πi
N knF2k+1

)
.

• Since Fourier-transformed data is of length 2N , there are no
memory savings.

12



Implicit Padding

•There is one advantage:

the work buffer is separate from the data buffer.

{fn}
N−1
n=0 {gn}

N−1
n=0

{Fk}
N−1
k=0 , k even {Fk}

N−1
k=0 , k odd {Gk}

N−1
k=0 , k even {Gk}

N−1
k=0 , k odd

{FkGk}
N−1
k=0 , k even {FkGk}

N−1
k=0 , k odd

{(f ∗ g)n}
N−1
n=0

•The computational complexity is 6KN log2N/2.

•By swapping arrays, we can use out-of-place transforms.

•The numerical error is similar to explicit padding.

13



Implicit Padding: speed

•The algorithms are comparable in speed:

10−5

10−4

10−3

10−2

10−1
ti
m
e
(s
ec
)

102 103 104 105 106

N

explicit

implicit

•Ours is much more complicated.
14



Convolutions in Higher Dimensions

•An explicitly padded convolution in 2 dimensions requires 12N
padded FFTs, and 4 times the memory of a cyclic convolution.

f gf g

F G

FG

f ∗ gf ∗ g

15



Implicit Convolutions in Higher Dimensions

• Implicitly padded 2-dimensional convolutions are done by first
doing implicitly padded FFTs in the x direction:

f g

FFTx{f}

kx even

FFTx{f}

kx odd

FFTx{g}

kx even

FFTx{g}

kx odd

•And then 2N one-dimensional convolutions in the y-direction:

FFTx{f}

kx even

FFTx{f}

kx odd

FFTx{g}

kx even

FFTx{g}

kx odd

FFTx{f ∗ g}

kx even

FFTx{f ∗ g}

kx odd

16



Implicit Convolutions in Higher Dimensions

•We recover f ∗ g by taking an inverse padded x-FFT:

FFTx{f ∗ g}

kx even

FFTx{f ∗ g}

kx odd

f ∗ g

•An implicitly padded convolution in 2 dimensions requires only
9N padded FFTs,

• and only twice the memory of a cyclic convolution.

•The operation count is 6KN logN/2.

17



Alternatives

•The memory savings could be achieved more simply by using
conventional padded transforms.

•This requires copying data, which is slow.

•Half of the FFTs in the x-direction are on zero-data.

•We can skip (“prune”) such transforms:

FFTx

FFTy

•This is slower with large data sets due to memory-striding issues.

•Phase-shift dealiasing has the same memory footprint as “1/2”
explicit padding.

18



Implicit Padding in 2D

• Implicit padding is faster in two dimensions:

10−3

10−2

10−1

100

101
ti
m
e
(s
ec
)

102 103

N

explicit

implicit

y-pruned

•And uses half the memory of explicit padding.
19



Implicit Padding in 3D

•The algorithm is easily extended to three dimensions:

10−4

10−3

10−2

10−1

100

101
ti
m
e
(s
ec
)

101 102

N

explicit

implicit

xz-pruned

• Implicit padding uses 1/4 the memory of explicit padding in 3D.
20



Centered Hermitian Data

•The input f is centered if {fn}
N/2−1
n=−N/2+1 ⇐⇒ {Fk}

N/2−1
k=−N/2+1.

• If {fn} is real-valued, then F(f) is Hermitian :

F−k = F k

•The convolution of the centered arrays f and g is

(f ∗ g)n =

N/2−1∑

p=n−N/2+1

fpgn−p.

•Padding centered data use a “2/3” rule:

{f̃n}
N−1
n=−N/2+1 = (f−N/2+1, . . . , f0, . . . , fN/2−1, 0, . . . , 0︸ ︷︷ ︸

N/2

).

•Phase-shifting is slower than explicit padding for centered data.
21



Centered Hermitian Data: 1D

•The 1D implicit convolution is as fast as explicit padding:

10−5

10−4

10−3

10−2

10−1
ti
m
e
(s
ec
)

102 103 104 105 106

N

explicit

implicit

•And has a comparable memory footprint.

22



Centered Hermitian Data: 2D

• Implicit centered convolutions are faster in higher dimensions:

10−3

10−2

10−1

100

101
ti
m
e
(s
ec
)

102 103

N

explicit

implicit

y-pruned

•And uses (2/3)d−1 the memory in d dimensions.

23



Optimal Problem Sizes

•We use convolutions in pseudo-spectral simulations:

∂tu + u · ∇u = −∇P + ν∇2u

is advanced in Fourier space, with u · ∇u calculated in x-space.

•FFTs are faster for highly composite problem sizes:

– N = 2n, N = 3n, etc., with N = 2n optimal.

• “2/3” padding: 341, 683, 1365 etc

– FFTs are of size N = 512, 1024, 2048, etc.

•Phase-shift dealiasing: 2n − 1

– FFTs are of length 2n−1.

• Implicit padding: 2n − 1.

– sub-transforms are of size 2n−1.
24



Ternary Convolutions

•The ternary convolution of three vectors f , g, and h is

∗ (f, g, h)n =
∑

a,b,c∈{0,...,N−1}

fa gb hc δa+b+c,n.

•Computing the transfer function for Z4 = N 3
∑

j ω
4(xj)

requires computing the Fourier transform of ω3.

•This requires a centered Hermitian ternary convolution:

∗ (f, g, h)n =
∑

a,b,c∈{−N
2 +1,...,N2 −1}

fa gb hc δa+b+c,n.

•Correctly dealiasing requires a “2/4” padding rule.

•Computing Z4 using 2048 × 2048 pseudospectral modes
simulation retains a maximum physical wavenumber of only 512.

25



Centered Hermitian Ternary Convolutions: 1D

•The 1D implicit ternary convolution is as fast as explicit
padding:

10−5

10−4

10−3

10−2

10−1

ti
m
e
(s
ec
)

102 103 104 105 106

N

explicit

implicit

•And has a comparable memory footprint. 26



Centered Hermitian Ternary Convolutions: 2D

• Implicit centered ternary convolutions are faster in higher 2D:

10−2

10−1

100

101
ti
m
e
(s
ec
)

102 103

N

explicit

implicit

y-pruned

•And use (1/2)d−1 the memory in d dimensions.
27



Conclusion

• Implicitly padded fast convolutions eliminate aliasing errors.

• Implicit padding uses (p/q)d−1 the memory of explicit
d-dimensional “p/q” padding.

•Computational speedup from increased data locality and
pruning FFTs.

•Expanding discontiguously is easier to program.

• “Efficient Dealiased Convolutions without Padding” submitted
to SIAM Journal on Scientific Computing.

•A C++ implementation under the LGPL is available at
http://fftwpp.sourceforge.net/.

•Fastest Fourier Transform in the West (http://fftw.org/)
provides sub-transforms.

28



References
[Cooley & Tukey 1965] J. W. Cooley & J. W. Tukey, Mathematics of Computation, 19:297, 1965.

[Gauss 1866] C. F. Gauss, “Nachlass: Theoria interpolationis methodo nova tractata,” in Carl Friedrich Gauss

Werke, volume 3, pp. 265–330, Königliche Gesellschaft der Wissenschaften, Göttingen, 1866.

[Patterson Jr & Orszag 1971] G. S. Patterson Jr & S. A. Orszag, Physics of Fluids, 14:2538, 1971.


