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Shell Models

e Shell models are reduced models of turbulence formulated in
Fourier space.

e The velocities in shell n are replaced by a single quantity, u,,.
e The wavenumbers k,, = kg\" scale geometrically:.

e General form:
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e The energy is

E - %Z 2

e If [, is a white-noise random process, the mean rate of energy
1
injection is € = 5 § (|Fu|*) [Novikov 1964].
n



DN model

o If we restrict to nearest-neighbour interactions and enforce

conservation of energy, the result is a generalised Desnyansky
and Novikov [1974] model (DN):
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e The nonlinear terms of the DN model have a fixed point:

Uy, = Ak;1/3.

e For constant coeflicients a,, and b, of opposite sign, Bell &
Nelkin [1977] showed that this fixed point is stable.

e This stability is thought to be responsible for the absence of
intermittent behaviour in the inviscid DN model.



GOY model

e The GOY model is a shell model of turbulence proposed by
Gledzer [1973] (the complex version was proposed by Yamada
and Ohkitani [1987]) which exhibits intermittency:

d k
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e The GOY model has next-nearest neighbour interactions and
conserves energy if a + 3+~ = 0.

e Time can be rescaled so that o = 1, leaving 2 free parameters:

£ and A.

e The free parameters can be chosen to conserve either:
— Enstrophy: 3> kZu,[*  (2D),

— Helicity: 3> (=1)"k,|un|*>  (3D).



Forced-Dissipative GOY turbulence

e With forcing on the first shell and small-scale dissipation, we
expect a Kolmogorov spectrum:
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Structure Functions

(uinl?y ~ ke

e For certain choices of parameter, the structure functions
for the GOY model demonstrate remarkable agreement with
experiment [Herweijer & van de Water 1995].
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Spectral Reduction of the GOY model

e Apply the method of spectral reduction to the GOY model: set

0)x*
(1) Uop + Uq(z) U2n+1 (0) U2n+1
u = o) =
(()) 9 Y n U Y

1 0), (1
= U9, = ufl ), and w91 = afl >u7(l ).

o Approximate o) by the constant (<\u7(21+)1\2>/<\u7(@1)\2>)1/4.

e This produces nearest-neighbour interactions and nonlinear
energy conservation, i.e. the DN model:

PN PN PN N
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Spectral Reduction of the GOY model (cont.)

e This conserves coarse-grained energy,

1
BV = 23 ulPAs Ay = (1+[0P)

e Coefficients for the DN model are given by
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e Repeating this approximation on the DN model does not change
the form of the governing equation.




Multi-Spectral Reduction

e We use the idea of spectral reduction to do simulations with
non-uniform resolution.

e For a general shell model, some of the interactions may be
counted twice:

A A A FA s

A PN PN PN N

e We remove interactions from the coarse grid to eliminate
redundancy:.
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Multi Spectral Reduction: Grid Geometry

e The DN model, which only has nearest-neighbour interactions,
leaves a particularly simple picture:

y an U s U = U = U == N

e The energy of the new system is %Zn u,|*A,, where we sum
over only visible modes and A,, = 1(2) on the fine (coarse) grid.

e There is a triplet of overlapping active modes:

e Projection/prolongation takes the energy input from each mode
of the overlapping triplet and scales the modes so that the
energies in the high-resolution and low-resolution grids agree.



Numerical Method: Projection

e The solution is advanced in time as follows:

e At the start of each time step 7, the energies of the overlapping
modes agree:

9 . 1 .
Slun” 4 sl P = Sl P A,

e Using a Runge-Kutta integrator, the fine grid is advanced in
time:

¥ ~7+1

J ~9+4+1
Uy, — Uy, Uy = Upiq-

e Next we project onto the coarse grid:

|~]+1} I bas 2
] L n+1
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Numerical Method: Prolongation
e Now we advance the coarse grid in time:
j—l—l.

?J%UJ N uf})

e Finally, we prolong from the coarse grid onto the fine grid:
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e The projection and prolongation operators conserve energy
whenever the two grids conserve energy in isolation.

e We can also include the changes in phase into the projection and
prolongation operators, which may be important for Navier—
Stokes turbulence.
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Renormalisation of Shell Models

e In addition to energy conservation, the grids must relax at the
same rate.

e We coarse-grain the equations by setting

() Y2n T U2n+1
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e The phases of uy, and uy, 1 are uncorrelated, so

112\ _ <\U2n+uzn+1\2> B <\U2n\2> + <\U2n+1\2>
<}un } >_ 2 - ("2

<\U2n’2> +2<\U2n+1’2> =\
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Multi-Spectral DN Model:
Statistical-Mechanical Equipartition

oc — v = 0.

e In the absence of forcing and viscosity, all modes should have
equal energy, giving a k~! spectrum:
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Multi-Spectral DN Model: Forced-Dissipative

ec=1,v=0.0001.
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e Full-resolution run is in red, decimated run in blue.
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Conclusions

e Shell models are simple systems that can behave like Navier—
Stokes turbulence.

e The multispectral method preserves behaviour of full-resolution
simulation.

e Can be extended to a hierarchy of grids.

e Uses fewer modes than a full simulation (by a factor of n2"~1).

e Future work: extension of reduction method to 2D and 3D
Navier—Stokes dynamic subgrid model.
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Asymptote: The Vector Graphics Language

symplole

http://asymptote.sf.net

(freely available under the GNU public license)
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