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Shell Models

• Shell models are reduced models of turbulence formulated in
Fourier space.

•The velocities in shell n are replaced by a single quantity, un.

•The wavenumbers kn = k0λ
n scale geometrically.

•General form:
(

d

dt
+ νk2

n

)
un = ikn

∑

ℓ,m

Aℓ,mu∗
ℓu

∗
m + Fn.

•The energy is

E =
1

2

∑

n

|un|2.

• If Fn is a white-noise random process, the mean rate of energy

injection is ǫ =
1

2

∑

n

〈
|Fn|2

〉
[Novikov 1964].
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DN model

• If we restrict to nearest-neighbour interactions and enforce
conservation of energy, the result is a generalised Desnyansky
and Novikov [1974] model (DN):

(
d

dt
+ νk2

n

)
un = ikn

(
anu

2
n−1 − λan+1unun+1 + bnun−1un − λbn+1u

2
n+1

)∗
.

•The nonlinear terms of the DN model have a fixed point:

un = Ak−1/3
n .

•For constant coefficients an and bn of opposite sign, Bell &
Nelkin [1977] showed that this fixed point is stable.

•This stability is thought to be responsible for the absence of
intermittent behaviour in the inviscid DN model.
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GOY model

•The GOY model is a shell model of turbulence proposed by
Gledzer [1973] (the complex version was proposed by Yamada
and Ohkitani [1987]) which exhibits intermittency:

(
d

dt
+ νk2

n

)
un = ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
+ Fn.

•The GOY model has next-nearest neighbour interactions and
conserves energy if α + β + γ = 0.

•Time can be rescaled so that α = 1, leaving 2 free parameters:
β and λ.

•The free parameters can be chosen to conserve either:

– Enstrophy: 1
2

∑
n k2

n|un|2 (2D),

– Helicity: 1
2

∑
n(−1)nkn|un|2 (3D).
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Forced-Dissipative GOY turbulence

•With forcing on the first shell and small-scale dissipation, we
expect a Kolmogorov spectrum:
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Structure Functions

〈|un|p〉 ∼ k
−ζp

n

•For certain choices of parameter, the structure functions
for the GOY model demonstrate remarkable agreement with
experiment [Herweijer & van de Water 1995].
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Spectral Reduction of the GOY model

•Apply the method of spectral reduction to the GOY model: set

u(1)
n =

u2n + σ
(0)∗
n u2n+1

1 + |σ(0)
n |2

, σ(0)
n =

u2n+1

u2n
,

⇒ u2n = u(1)
n , and u2n+1 = σ(0)

n u(1)
n .

•Approximate σ
(0)
n by the constant (〈|u(1)

n+1|2〉/〈|u
(1)
n |2〉)1/4.

•This produces nearest-neighbour interactions and nonlinear
energy conservation, i.e. the DN model:
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Spectral Reduction of the GOY model (cont.)

•This conserves coarse-grained energy,

E(1) =
1

2

∑

n

|u(1)
n |2∆n, ∆n = (1 + |σ(0)

n |2).

•Coefficients for the DN model are given by

λ(1) = λ2, ν(1)
n = ν

(
1 + |σ(0)

n |2λ2

1 + |σ(0)
n |2

)
.

a(1)
n =

γ

λ2

(
σ

(0)
n−1

1 + |σ(0)
n |2

)
, b(1)

n =
−α

λ

(
σ

(0)
n−1σ

(0)
n

1 + |σ(0)
n |2

)
.

•Repeating this approximation on the DN model does not change
the form of the governing equation.
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Multi-Spectral Reduction

•We use the idea of spectral reduction to do simulations with
non-uniform resolution.

•For a general shell model, some of the interactions may be
counted twice:

•We remove interactions from the coarse grid to eliminate
redundancy.
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Multi Spectral Reduction: Grid Geometry

•The DN model, which only has nearest-neighbour interactions,
leaves a particularly simple picture:

•The energy of the new system is 1
2

∑
n |un|2∆n, where we sum

over only visible modes and ∆n = 1(2) on the fine (coarse) grid.

•There is a triplet of overlapping active modes:

•Projection/prolongation takes the energy input from each mode
of the overlapping triplet and scales the modes so that the
energies in the high-resolution and low-resolution grids agree. 11



Numerical Method: Projection

•The solution is advanced in time as follows:

•At the start of each time step j, the energies of the overlapping
modes agree:

1

2

∣∣uj
n

∣∣2 +
1

2
|uj

n+1|2 =
1

2
|u(1)j

n |2∆n.

•Using a Runge–Kutta integrator, the fine grid is advanced in
time:

uj
n → ũj+1

n uj
n+1 → ũj+1

n+1.

•Next we project onto the coarse grid:

ũ(1)j
n =

√∣∣ũj+1
n

∣∣2 +
∣∣ũj+1

n+1

∣∣2

2
.
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Numerical Method: Prolongation

•Now we advance the coarse grid in time:

ũ(1)j
n → u(1)j+1

n .

•Finally, we prolong from the coarse grid onto the fine grid:

uj+1
n =

√
|u(1)j+1

n |2

|ũ(1)j
n |2

ũj+1
n .

uj+1
n+1 =

√
|u(1)j+1

n |2

|ũ(1)j
n |2

ũj+1
n+1.

•The projection and prolongation operators conserve energy
whenever the two grids conserve energy in isolation.

•We can also include the changes in phase into the projection and
prolongation operators, which may be important for Navier–
Stokes turbulence.
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Renormalisation of Shell Models

• In addition to energy conservation, the grids must relax at the
same rate.

•We coarse-grain the equations by setting

u(1)
n =

u2n + u2n+1

C
.

•The phases of u2n and u2n+1 are uncorrelated, so

〈∣∣u(1)
n

∣∣2
〉

=

〈
|u2n + u2n+1|2

〉

C2
=

〈
|u2n|2

〉
+
〈
|u2n+1|2

〉

C2

=

〈
|u2n|2

〉
+
〈
|u2n+1|2

〉

2
⇒ C =

√
2
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Multi-Spectral DN Model:
Statistical-Mechanical Equipartition

• ǫ = ν = 0.

• In the absence of forcing and viscosity, all modes should have
equal energy, giving a k−1 spectrum:
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Multi-Spectral DN Model: Forced-Dissipative
Turbulence

• ǫ = 1, ν = 0.0001.
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•Full-resolution run is in red, decimated run in blue.
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Conclusions

• Shell models are simple systems that can behave like Navier–
Stokes turbulence.

•The multispectral method preserves behaviour of full-resolution
simulation.

•Can be extended to a hierarchy of grids.

•Uses fewer modes than a full simulation (by a factor of n2n−1).

•Future work: extension of reduction method to 2D and 3D
Navier–Stokes dynamic subgrid model.
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Asymptote: The Vector Graphics Language

symptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptote

http://asymptote.sf.net

(freely available under the GNU public license)
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