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High Reynolds Number Turbulence

e Turbulent systems are characterized by the Reynolds number
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where U and L are a characteristic velocity and length scale, and
v is the (kinematic) viscosity.

e The required resolution grows as R4,

e Airplanes have R ~ 10° = 10'° modes.

e The atmosphere has R ~ 10 = 10?" modes.

e Jupiter’s Red Spot has R ~ 10'* = 103! modes.

e The state of the art is 4096° ~ 10 modes.



High Reynolds Number Turbulence

e Under resolved simulations can have errors even at large scales:
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e Since we are unable to perform full-resolution simulations, we
have two choices:

e increase the viscosity;

e use a subgrid model to approximate the effect of the small scales.



Shell Models of Turbulence

e Shell models are systems of ODEs which mimic the Fourier-
transtormed Navier—Stokes equation.

e Collections of modes {uy, : & € [A", "1} are represented by
a single quantity u,,:
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Shell Models of Turbulence: Interaction

e The convolution is replaced with a quadratic function of u:

du,,

__ E 2
dt
p.q

e The DN model |Desnyansky & Novikov 1974] has nearest-
neighbour interactions and conserves energy E = 1" |

dun
2 * 2

dt

e The GOY |Gledzer 1973], [Yamada & Ohkitani 1987] model
adds next-nearest-neighbour interactions and also conserves the

helicity-like quantity H = 1> (—1)"k, |

du,,
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Shell Models: Kolmogorov Scaling

e Simulations reproduce a k~*? Kolmogorov inertial range:
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e Shell models are simpler and easier to simulate than the Navier—
Stokes equations [Bowman et al. 2006].



Shell Models: Intermittency

e They also reproduce statistical properties of Navier—Stokes
turbulence: the moments (|u,|") ~ k, Sp
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scale very much like experimental structure exponents for 3D
turbulence (dashed lines) [Herweijer & van de Water 1995].



Shell Models: Equipartition

e Another property shell models share with the Navier—Stokes
equation is the equipartition spectrum.

e With no force term and setting v = 0, the system reaches
equipartition, with E(k) ~ 1/k.
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e This provides a useful test of the numerical implementation.



Spectral Reduction

e Navier—Stokes simulations at high Reynolds number require
more modes than current computers can handle.

e We use shell models as testbeds for developing numerical
techniques.

e Consider a generalization of spectral reduction
Bowman et al. 1999]: Instead of evolving w, directly, we
evolve

. Uy + OpUopy1 L Ugpal

Up 1 — 1‘1“0'71‘2 , Op = ’Ufzn.

e Then ug, = up1 and ug,y1 = Oply 1.

e This reduces the number of active modes by half:
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Fixed Point

e Spectral reduction reduces the GOY model to the DN model,
which is a fixed point.
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e Further reduction is straightforward:
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Decimation

e Spectral reduction provides us with evolution equations for the
velocity amplitudes w,, 1.

e In order to close the equations, we must approximate o,

O‘n — 1 p— un71 — ,

i.e. we set the decimated mode to be the average of the
undecimated modes.

1
e The energy Ey = 5 zn: 2 |un1|* is conserved,

e Binning modifies the viscous term and the interaction
coefficients:

(a, B,7) = (a,b) = (% _%) > (aéb).
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Decimation

e Spectrally reduced shell models reproduce the Kolmogorov

spectrum:
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Decimation

e and exhibit equipartition when the bins are equally-spaced:
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Non-Uniform Spectral Reduction

e Low-wavenumber modes are more physically important.
e Ideally, we would like to decimate only modes with & > kcytofr-

e Unfortunately, this modifies the equipartition spectrum:
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Multispectral Reduction

e The multispectral method is designed to solve these problems.
e We wish to decimate only at high-wavenumbers.
e The equipartition spectrum is only correct on uniform grids.

e Therefore, we must use multiple, differently decimated, partly
overlapping grids.
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Multispectral Reduction

e All but one grid is decimated using spectral reduction.

e For a general shell model, some of the interactions may be
counted twice:
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e We remove interactions from the coarse grid to eliminate
redundancy.
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Multispectral Reduction: Grid Geometry

e Example: The DN model has nearest-neighbour interactions:

y o U == U == U == U == N

e The energy of the new system is %Zn 1w, |*A,, where we sum
over only visible modes and A, = 1(2) on the fine (coarse) grid.

e There is a triplet of overlapping active modes:

e Projection/prolongation takes the energy input from each mode
of the overlapping triplet and scales the modes so that the
energies in the high-resolution and low-resolution grids agree.
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Multispectral Method: Projection

e The solution is advanced in time as follows:

e At the start of each time step 7, the energies of the overlapping
modes agree:
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e Using a Runge-Kutta integrator, the fine grid is advanced in
time:

j ~7+1 j ~5+1
U’ — U n—l—l — un—l—l

e Next we project onto the coarse grid:
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Multispectral Method: Prolongation

e Now we advance the coarse grid in time:
203y i+,

e Finally, we prolong from the coarse grid onto the fine grid:
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e The projection and prolongation operators conserve energy
whenever the two grids conserve energy in isolation.

e We can also include the changes in phase into the projection and
prolongation operators, which may be important for Navier—
Stokes turbulence.
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Multispectral Method: Normalisation

e In addition to energy conservation, the grids must relax at the
same rate.

e We coarse-grain the equations by setting

(1) _ Y2n T U2p+1

"o C

e The phases of uy, and us,41 are uncorrelated, so

< 2> _ <!uQn+u2n+1!2> B <\u2ny2> N <\uQn+112>

u(V
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Multispectral Method: Forced-Dissipative
Turbulence

e Multispectral shell models reproduce the Kolmogorov
spectrum.
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e Note that the resolution change does not disturb the spectrum.
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Multispectral Method: Equipartition

e Uniform grids allow us to reach the correct equipartition:
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Multispectral Method: Efficiency

e This technique can be extended to a hierarchy of n grids.

e The number of modes is reduced by a factor of n2!=".
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e The proportion of the grids that overlap can also be varied.
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Conclusions

e Shell models are simple systems that can behave like Navier—
Stokes turbulence.

e The multispectral method preserves the behaviour of the full-
resolution simulation.

e The multispectral method can be extended to a hierarchy of
orids.

e The multispectral method uses fewer modes than a full
simulation (by a factor of n2"1).

e Future work: extension of reduction method to 2D and 3D
Navier—Stokes dynamic subgrid model.
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Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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