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High Reynolds Number Turbulence

•Turbulent systems are characterized by the Reynolds number

R =
UL

ν
,

where U and L are a characteristic velocity and length scale, and
ν is the (kinematic) viscosity.

•The required resolution grows as R9/4.

•Airplanes have R ≈ 106 ⇒ 1016 modes.

•The atmosphere has R ≈ 109 ⇒ 1020 modes.

• Jupiter’s Red Spot has R ≈ 1014 ⇒ 1031 modes.

•The state of the art is 40963 ≈ 1010 modes.
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High Reynolds Number Turbulence

•Under resolved simulations can have errors even at large scales:
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• Since we are unable to perform full-resolution simulations, we
have two choices:

• increase the viscosity;
• use a subgrid model to approximate the effect of the small scales. 4



Shell Models of Turbulence

• Shell models are systems of ODEs which mimic the Fourier-
transformed Navier–Stokes equation.

•Collections of modes {uk : k ∈ [λn, λn+1)} are represented by
a single quantity un:
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Shell Models of Turbulence: Interaction

•The convolution is replaced with a quadratic function of u:

dun
dt

= kn
∑

p,q

cp,qupuq − νk2nun.

•The DN model [Desnyansky & Novikov 1974] has nearest-
neighbour interactions and conserves energy E

.
= 1

2

∑
|un|2:

dun
dt

= ikn
(
anu

2
n−1 − λan+1unun+1 + bnun−1un − λbn+1u

2
n+1

)∗ − νk2nun.

•The GOY [Gledzer 1973], [Yamada & Ohkitani 1987] model
adds next-nearest-neighbour interactions and also conserves the
helicity-like quantity H = 1

2

∑
n(−1)nkn |un|2:

dun
dt

= ikn

(
αun+1un+2 +

β

λ
un−1un+1 +

γ

λ2
un−1un−2

)∗
− νk2nun.
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Shell Models: Kolmogorov Scaling

• Simulations reproduce a k−5/3 Kolmogorov inertial range:
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• Shell models are simpler and easier to simulate than the Navier–
Stokes equations [Bowman et al. 2006]. 7



Shell Models: Intermittency

•They also reproduce statistical properties of Navier–Stokes

turbulence: the moments 〈|un|p〉 ∼ k
−ζp
n
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scale very much like experimental structure exponents for 3D
turbulence (dashed lines) [Herweijer & van de Water 1995].
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Shell Models: Equipartition

•Another property shell models share with the Navier–Stokes
equation is the equipartition spectrum.

•With no force term and setting ν = 0, the system reaches
equipartition, with E(k) ∼ 1/k.
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•This provides a useful test of the numerical implementation. 9



Spectral Reduction

•Navier–Stokes simulations at high Reynolds number require
more modes than current computers can handle.

•We use shell models as testbeds for developing numerical
techniques.

•Consider a generalization of spectral reduction
[Bowman et al. 1999]: Instead of evolving un directly, we
evolve

un,1
.
=

u2n + σ∗
nu2n+1

1 + |σn|2
, σn

.
=

u2n+1

u2n
.

•Then u2n = un,1 and u2n+1 = σnun,1.

•This reduces the number of active modes by half:
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Fixed Point

• Spectral reduction reduces the GOY model to the DN model,
which is a fixed point.

•Further reduction is straightforward:

un,ℓ+1
.
=

u2n,ℓ + σ∗
n,ℓu2n+1,ℓ

1 + |σn,ℓ|2
, σn,ℓ

.
=

u2n+1,ℓ

u2n,ℓ
.

GOY
reduction

DN
reduction

DN
reduction

DN
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Decimation

• Spectral reduction provides us with evolution equations for the
velocity amplitudes un,1.

• In order to close the equations, we must approximate σn.

σn = 1 ⇒ un,1 =
u2n + u2n+1

2
,

i.e. we set the decimated mode to be the average of the
undecimated modes.

•The energy E1
.
=

1

2

∑

n

2 |un,1|2 is conserved.

•Binning modifies the viscous term and the interaction
coefficients:

(α, β, γ) → (a, b)
.
=
( γ

λ2
,−α

λ

)
→ (a, b)

2
.
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Decimation

• Spectrally reduced shell models reproduce the Kolmogorov
spectrum:
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Decimation

• and exhibit equipartition when the bins are equally-spaced:
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Non-Uniform Spectral Reduction

•Low-wavenumber modes are more physically important.

• Ideally, we would like to decimate only modes with k > kcutoff.

•Unfortunately, this modifies the equipartition spectrum:
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Multispectral Reduction

•The multispectral method is designed to solve these problems.

•We wish to decimate only at high-wavenumbers.

•The equipartition spectrum is only correct on uniform grids.

•Therefore, we must use multiple, differently decimated, partly
overlapping grids.

16



Multispectral Reduction

•All but one grid is decimated using spectral reduction.

•For a general shell model, some of the interactions may be
counted twice:

•We remove interactions from the coarse grid to eliminate
redundancy.
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Multispectral Reduction: Grid Geometry

•Example: The DN model has nearest-neighbour interactions:

•The energy of the new system is 1
2

∑
n |un|2∆n, where we sum

over only visible modes and ∆n = 1(2) on the fine (coarse) grid.

•There is a triplet of overlapping active modes:

•Projection/prolongation takes the energy input from each mode
of the overlapping triplet and scales the modes so that the
energies in the high-resolution and low-resolution grids agree.
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Multispectral Method: Projection

•The solution is advanced in time as follows:

•At the start of each time step j, the energies of the overlapping
modes agree:

1

2

∣∣ujn
∣∣2 + 1

2
|ujn+1|2 =

1

2
|u(1)jn |2∆n.

•Using a Runge–Kutta integrator, the fine grid is advanced in
time:

ujn → ũj+1
n ujn+1 → ũj+1

n+1.

•Next we project onto the coarse grid:

ũ(1)jn =

√√√√
∣∣∣ũj+1

n

∣∣∣
2

+
∣∣∣ũj+1

n+1

∣∣∣
2

2
.
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Multispectral Method: Prolongation

•Now we advance the coarse grid in time:

ũ(1)jn → u(1)j+1
n .

•Finally, we prolong from the coarse grid onto the fine grid:

uj+1
n =

√√√√|u(1)j+1
n |2

|ũ(1)jn |2
ũj+1
n .

uj+1
n+1 =

√√√√|u(1)j+1
n |2

|ũ(1)jn |2
ũj+1
n+1.

•The projection and prolongation operators conserve energy
whenever the two grids conserve energy in isolation.

•We can also include the changes in phase into the projection and
prolongation operators, which may be important for Navier–
Stokes turbulence. 20



Multispectral Method: Normalisation

• In addition to energy conservation, the grids must relax at the
same rate.

•We coarse-grain the equations by setting

u(1)n =
u2n + u2n+1

C
.

•The phases of u2n and u2n+1 are uncorrelated, so

〈∣∣∣u(1)n

∣∣∣
2
〉

=

〈
|u2n + u2n+1|2

〉

C2
=

〈
|u2n|2

〉
+
〈
|u2n+1|2

〉

C2

=

〈
|u2n|2

〉
+
〈
|u2n+1|2

〉

2
⇒ C =

√
2
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Multispectral Method: Forced-Dissipative
Turbulence

•Multispectral shell models reproduce the Kolmogorov
spectrum.
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•Note that the resolution change does not disturb the spectrum.
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Multispectral Method: Equipartition

•Uniform grids allow us to reach the correct equipartition:
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Multispectral Method: Efficiency

•This technique can be extended to a hierarchy of n grids.

•The number of modes is reduced by a factor of n21−n.
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•The proportion of the grids that overlap can also be varied. 24



Conclusions

• Shell models are simple systems that can behave like Navier–
Stokes turbulence.

•The multispectral method preserves the behaviour of the full-
resolution simulation.

•The multispectral method can be extended to a hierarchy of
grids.

•The multispectral method uses fewer modes than a full
simulation (by a factor of n2n−1).

•Future work: extension of reduction method to 2D and 3D
Navier–Stokes dynamic subgrid model.
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Asymptote: 2D & 3D Vector Graphics Language

Andy Hammerlindl, John C. Bowman, Tom Prince

http://asymptote.sf.net

(freely available under the GNU public license)
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