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Convolutions

The convolution of the functions F and G is

(F ∗ G )(t) =

∫ ∞
−∞

F (τ)G (t − τ) dτ.

For example, if F = G = χ(−1,1)(t)

Then F ∗ G is:
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Convolutions

I Out-of-focus images are a convolution.

I Image filtering.

I Digital signal processing.

I Correlation analysis.

I The Lucas–Lehmer primality test uses fast convolutions.

I Pseudospectral simulations of nonlinear PDEs.
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Convolutions

The convolution of F = {Fk}k∈Z and G = {Gk}k∈Z is denoted
F ∗ G , with

(F ∗ G )k =
∑
`,m ∈Z

F`Gmδk,`+m =
∑
` ∈Z

F`Gk−`

Properties:

I Commutativity: F ∗ G = G ∗ F
I Associativity: ∗(F ,G ,H) = (F ∗ G ) ∗ H = F ∗ (G ∗ H),

where

∗(F ,G ,H)k =
∑

`1,`2,`3∈Z
F`1G`2H`3δk,`1+`2+`3

I Identify element: F ∗ δ = δ ∗ F = F
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Application: Correlation Analysis

I The cross-correlation of F and G is F ? G , with

(F ? G )k =
∑
`

F ∗` Gk+`.

I This can be computed as the convolution of F ∗k with G−k .

I Cross-correlation is useful in signal processing and data
analysis.

I In this case, input data is {Fk}N−1
k=0 , or non-centered.
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Non-centered data

I Input data: {Fk}N−1
k=0 and {Gk}N−1

k=0 .

I This produces non-centered convolutions:

(F ∗ G )k =
k∑
`=0

F`Gk−`, k = 0, . . . ,N − 1

I For non-centered data,
∗(F ,G ,H) = F ∗ (G ∗ H) = (F ∗ G ) ∗ H .
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Application: Pseudospectral simulations

I The incompressible 2D Navier–Stokes vorticity equation

∂ω

∂t
+ (u · ∇)ω = ν∇2ω

is Fourier-transformed into

∂ωk

∂t
=
∑

p+q=k

εkpq
q2

ω∗pω
∗
q−νk2ωk , εkpq = (ẑ · p × q)δk+p+q

I The nonlinearity becomes a convolution:

(F ∗ G )k =
∑
k1,k2

Fk1Gk2 δk,k1,k2 .
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Application: Pseudospectral simulations

I Input data {Fk}N−1
k=−N+1 is centered.

I It is also Hermitian-symmetric F−k = F ∗k .

I Hermitian symmetry ⇐⇒ F−1[F ] ∈ R
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Centered data

I Input data: {Fk}N−1
k=−N+1 and {Gk}N−1

k=−N+1.

(F ∗ G )k =

min (N−1,k+N−1)∑
`=max (−N+1,k−N+1)

F`Gk−`

I Considering Hermitian-symmetric data (F−k = F ∗k ), we
compute data for k ≥ 0, so

(F ∗ G )k =
N−1∑

`=k−N+1

F`Gk−`.
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Centered data

Theorem
For centered data, ∗(F ,G ,H) 6= F ∗ (G ∗ H) 6= (F ∗ G ) ∗ H.

Proof.
Let N = 2.

∗(Fa,Gb,Hc)1 (Fa ∗ (Gb ∗ Hc)`)1

a b c a ` b c

1 0 0 1 0 0 0
0 1 0 0 1 1 0
0 0 1 0 1 0 1
1 1 -1 1 0 1 -1
1 -1 1 1 0 -1 1
-1 1 1 N/A
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FFT-based convolutions

I The convolution sum involves O(N2) terms. Using FFTs,
we can compute a convolution in O(N logN) operations.

I The inverse discrete Fourier transform (DFT) of {Fk}N−1
k=0

is

fn
.

= F−1[F ] =
N−1∑
k=0

ζnkN Fk

I ζN = e
2πi
N is the N th root of unity. ζaaN = ζN , ζNN = 1.

I For {Fk}k∈Z, {Gk}k∈Z,

F [F ∗ G ] = F [F ]×F [G ].
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FFT-based convolutions

I The discrete Fourier transform treats arrays as periodic.

I A naive application of the convolution theorem produces
a cyclic convolution:

{F ∗N G}k .
=

N−1∑
κ=0

FκmodNG(k−κ)modN ,

I These extra terms are called aliases.
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Dealiasing techniques

I compare three dealiasing techniques:

I Phase-shift dealiasing

I Explicit zero-padding

I Implicit zero-padding
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Phase-shift dealiasing

The ∆-shifted Fourier transform,

F−1
∆ [F ]j

.
=

m−1∑
k=0

ζ
(j+∆)k
N Fk ,

produces a convolution with an aliasing error of opposite sign
for ∆ = 1/2:

{F ∗∆ G}k = F∆

[
F−1

∆ [F ]×F−1
∆ [F ]

]
=

k∑
κ=0

FκGk−κ −
m−1∑
κ=k+1

FκGk−κ+m.

One recovers the linear convolution by computing

F ∗ G =
1

2
[(F ∗N G ) + (F ∗∆ G )].
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Phase-shift dealiasing

{Fk}N−1
k=0 {Gk}N−1

k=0

F−1{F} F−1
∆ {F} F−1{G} F−1

∆ {G}

F ∗N G F ∗∆ G

F ∗G
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Explicit zero-padding

Another option is to append zero-data to the input array.
For non-centered data, pad from length N to length 2N :

{F̃k}2N−1
n =0 = (F0,F1, . . . ,FN−2,FN−1, 0, . . . , 0︸ ︷︷ ︸

N

)

(F̃ ∗2N G̃ )k =
2N−1∑
`=0

F̃`(mod 2N)G̃(k−`)(mod 2N)

=
N−1∑
`=0

F`G̃(k−`)(mod 2N)

=
k∑
`=0

F`Gk−`.

Centered data is padded from length 2N − 1 to length 3N .
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Explicit zero-padding

{Fk}N−1
k=0 {Gk}N−1

k=0

{Fk}N−1
k=0 {0}N−1

k=0 {Gk}N−1
k=0 {0}N−1

n=0

{fn}2N−1
n=0 {gn}2N−1

n=0

{fngn}2N−1
n=0

{(F ∗G)k}N−1
k=0

{(F ∗G)k}N−1
k=0
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Implicit Zero-padding

Implicit padding involves using a separate work array to
compute the DFT:

fx =
2N−1∑
k=0

ζxk2NFk , Fk = 0 if k ≥ N

is attained by computing

f2x =
N−1∑
k=0

ζxkN Fk

and

f2x+1 =
N−1∑
k=0

ζxkN (ζx2NFk).
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Implicit zero-padding

{Fk}N−1
k=0 {Gk}N−1

k=0

{fn}N−1
n=0 , n even {fn}N−1

n=0 , n odd {gn}N−1
n=0 , n even {gn}N−1

n=0 , n odd

{fngn}N−1
n=0 , n even {fngn}N−1

n=0 , n odd

{(F ∗G)k}N−1
k=0
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Comparison of 1D methods: centered data

For non-centered data:

Phase-shift
dealiasing

Explicit
padding

Implicit
padding

Memory 4N 4N 4N
Complexity 6KN logN 6KN logN 6KN logN

For centered Hermitian data:

Phase-shift
dealiasing

Explicit
padding

Implicit
padding

Memory 4N 3N 3N
Complexity 6KN logN 9

2
KN logN 9

2
KN logN
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Comparison of zero-padding methods
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Comparison of zero-padding methods
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Comparison of zero-padding methods
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Phase-shift dealiasing: multiple dimensions

A d-dimensional convolution requires computing 2d cyclic
convolutions with different shifts.
For 3D pseudospectral simulations, one instead computes

F ∗N G

and
F ∗∆ G

with ∆ = (1
2
, 1

2
, 1

2
). This removes singly-aliased terms.

Doubly and triply aliased terms are removed by setting terms
to zero with k ≥ 2

√
2

3
N ≈ 0.94N .
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Explicit Zero-padding: multiple dimensions

Multi-dimensional convolutions need to be padded in each
dimension.
Non-centered convolutions are padded from Nd to

(2N)d .

Centered convolutions are padded from (2N − 1)d to

(3N)d .

Some transforms are performed on arrays or zeroes; these can
be skipped, and the transform is referred to as pruned.
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Explicit Zero-padding: multiple dimensions

F GF G

f g

fg

F ∗GF ∗G
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Implicit Zero-padding: multiple dimensions

The 2D FFT-based convolution algorithm is:

F−1
y → F−1

x → (multiply)→ Fx → Fy

Note that
F−1

x → (multiply)→ Fx

is just a convolution in the x-direction.

So the 2D convolution algorithm can be written

F−1
y → (x-convolution)→ Fy .

Since the implicitly dealiased convolution uses non-contiguous
memory, we can re-use work arrays for sub-convolutions.
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Implicit Zero-padding: multiple dimensions

F ∗G
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Comparison for Centered Convolutions

Method Complexity Memory Footprint

Explicit
3 · 2dd KNd logN 2d+1 Nd

without Pruning
Explicit

6
(
2d − 1

)
KNd logN 2d+1 Nd

with Pruning

Implicit 6
(
2d − 1

)
KNd logN 4Nd
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Comparison for Centered Convolutions

Method Complexity Memory Footprint

Phase-Shift
3 · 22d−1dKNd logN 22dNd

Dealiasing
Partial

3 · 2ddKNd logN 2d+1Nd

Phase-shift
Explicit 3d+1

2
d KNd logN 3dNd

Explicit 9
2

(
3d − 2d

)
KNd logN 3dNd

with Pruning

Implicit 9
2

(
3d − 2d

)
KNd logN 3 · 2d−1Nd
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Performance: multiple dimensions
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Performance: multiple dimensions
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Hermitian-symmetric centered 2D convolution.
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Performance: multiple dimensions
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Performance: multiple dimensions
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Multi-threaded convolutions

Implicit dealiasing has been implemented with multiple
threads.
Each sub-convolution requires its own work array.
With P processors, the memory increase is of the order

PNd−1

for d-dimensional convolutions.
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Implicit Zero-padding: multiple threads

F ∗G
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Implicit multi-threading performance
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Implicit multi-threading performance

3

4

5

6

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

serial

4 cores

Centered 1D convolution.
Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta



Implicit multi-threading performance
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Implicit multi-threading performance
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Implicit multi-threading performance
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Implicit multi-threading performance
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Implicit multi-threading performance
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Implicit multi-threading performance

30

60

90

120

ti
m
e/
(N

3
lo
g
2
N

3
)
(n
s)

101 102

N

serial

4 cores

Centered 3D convolution.
Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta



Implicit multi-threading performance

I One-dimensional convolutions on four cores are about 2
times as fast as on one core.

I Two-dimensional convolutions on four cores are about 3
times as fast.

I Three-dimensional convolutions on four cores are about
3.5 times as fast.
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit

5

6

7

8

9

10

ti
m
e/
(N

2
lo
g
2
N

2
)
(n
s)

103

N

explicit

implicit

Centered 2D convolution.
Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta



Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Summary of Results

I Implicit methods require much less work memory than is
required by explicit methods .

I The implicit method had a speedup of up to 3.5 on four
cores, while the explicit method sped-up of up to a factor
of 3.

I The implicit method is around twice as fast as the explicit
method for multidimensional convolutions.
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Usage example

Computing the nonlinear source of the 2D incompressible
Navier–Stokes equations in a vorticity formulation, which
appears in Fourier space as∑

p

pxky − pykx
|k − p|2 ωpωk−p,

is performed as follows:

conv2(ikxω, ikyω, ikyω/k
2,−ikxω/k2).

One also has the option of passing work arrays to conv2,

which can then be used elsewhere.
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Conclusion

I Implicitly zero-padding multi-dimensional convolutions is
faster and requires less memory than explicit routines.

I The algorithm has been successfully implemented on a
shared-memory architecture with only a small increase in
work memory.

I Convolution algorithms are available for complex
non-centered data and centered Hermitian-symmetric
data in 1D, 2D, and 3D.

I Ternary convolution algorithms are available for centered
Hermitian-symmetric in 1D and 2D.
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Future work

I A distributed-memory implementation based on openMPI.

I Improve multi-threaded parallelization.

I Convolutions on real data.

I Correlation routines.

I Auto-convolution/correlation routines.
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Resources

FFTW++:
http://fftwpp.sourceforge.net

Asymptote:
http://asymptote.sourceforge.net

Malcolm Roberts:
http://www.math.ualberta.ca/~mroberts

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta


	Convolutions
	Application: Correlation Analysis
	Application: Pseudospectral simulations

