The Fastest Convolution in the West

Malcolm Roberts and John C. Bowman

Aix-Marseille University, University of Alberta

CEMRACS, 2012-08-14

Convolutions

The convolution of the functions F and G is

$$(F * G)(t) = \int_{-\infty}^{\infty} F(\tau)G(t-\tau) d\tau.$$

For example, if $F = G = \chi_{(-1,1)}(t)$

Then F * G is:

Malcolm Roberts and John C. Bowman

Convolutions

- Out-of-focus images are a convolution.
- Image filtering.
- Digital signal processing.
- Correlation analysis.
- ► The Lucas-Lehmer primality test uses fast convolutions.
- Pseudospectral simulations of nonlinear PDEs.

Convolutions

The convolution of $F = \{F_k\}_{k \in \mathbb{Z}}$ and $G = \{G_k\}_{k \in \mathbb{Z}}$ is denoted F * G, with

$$(F * G)_k = \sum_{\ell,m \in \mathbb{Z}} F_\ell G_m \delta_{k,\ell+m} = \sum_{\ell \in \mathbb{Z}} F_\ell G_{k-\ell}$$

Properties:

- Commutativity: F * G = G * F
- ► Associativity: *(F, G, H) = (F * G) * H = F * (G * H), where

$$*(F, G, H)_k = \sum_{\ell_1, \ell_2, \ell_3 \in \mathbb{Z}} F_{\ell_1} G_{\ell_2} H_{\ell_3} \delta_{k, \ell_1 + \ell_2 + \ell_3}$$

• Identify element: $F * \delta = \delta * F = F$

Malcolm Roberts and John C. Bowman

Application: Correlation Analysis

• The cross-correlation of F and G is $F \star G$, with

$$(F\star G)_k=\sum_\ell F_\ell^*G_{k+\ell}.$$

- This can be computed as the convolution of F_k^* with G_{-k} .
- Cross-correlation is useful in signal processing and data analysis.
- In this case, input data is $\{F_k\}_{k=0}^{N-1}$, or *non-centered*.

Non-centered data

- Input data: $\{F_k\}_{k=0}^{N-1}$ and $\{G_k\}_{k=0}^{N-1}$.
- This produces non-centered convolutions:

$$(F*G)_k = \sum_{\ell=0}^k F_\ell G_{k-\ell}, \quad k=0,\ldots,N-1$$

For non-centered data, *(F, G, H) = F * (G * H) = (F * G) * H.

Application: Pseudospectral simulations

► The incompressible 2D Navier–Stokes vorticity equation

$$\frac{\partial \omega}{\partial t} + (u \cdot \nabla) \, \omega = \nu \nabla^2 \omega$$

is Fourier-transformed into

$$\frac{\partial \omega_k}{\partial t} = \sum_{p+q=k} \frac{\epsilon_{kpq}}{q^2} \omega_p^* \omega_q^* - \nu k^2 \omega_k, \quad \epsilon_{kpq} = (\hat{z} \cdot p \times q) \delta_{k+p+q}$$

The nonlinearity becomes a convolution:

$$(F * G)_k = \sum_{k_1,k_2} F_{k_1} G_{k_2} \,\delta_{k,k_1,k_2}.$$

Application: Pseudospectral simulations

• Input data $\{F_k\}_{k=-N+1}^{N-1}$ is centered.

• It is also Hermitian-symmetric $F_{-k} = F_k^*$.

• Hermitian symmetry $\iff \mathcal{F}^{-1}[F] \in \mathbb{R}$

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta

Centered data

▶ Input data: $\{F_k\}_{k=-N+1}^{N-1}$ and $\{G_k\}_{k=-N+1}^{N-1}$.

$$(F * G)_k = \sum_{\ell=\max(-N+1,k-N+1)}^{\min(N-1,k+N-1)} F_\ell G_{k-\ell}$$

► Considering Hermitian-symmetric data (F_{-k} = F^{*}_k), we compute data for k ≥ 0, so

$$(F * G)_k = \sum_{\ell=k-N+1}^{N-1} F_\ell G_{k-\ell}.$$

Malcolm Roberts and John C. Bowman

Centered data

Theorem For centered data, $*(F, G, H) \neq F * (G * H) \neq (F * G) * H$. Proof. Let N = 2.

*(<i>F</i>	F_a, G_b	$(H_c)_1$	(<i>F</i>	a * ($(G_b *$	$(H_c)_\ell$
а	b	с	а	ℓ	b	с
1	0	0	1	0	0	0
0	1	0	0	1	1	0
0	0	1	0	1	0	1
1	1	-1	1	0	1	-1
1	-1	1	1	0	-1	1
-1	1	1			N/A	۱

FFT-based convolutions

- ► The convolution sum involves O(N²) terms. Using FFTs, we can compute a convolution in O(N log N) operations.
- ► The inverse discrete Fourier transform (DFT) of {F_k}^{N-1}_{k=0} is

$$f_n \doteq \mathcal{F}^{-1}[F] = \sum_{k=0}^{N-1} \zeta_N^{nk} F_k$$

ζ_N = e^{2πi}/_N is the Nth root of unity. ζ^a_{aN} = ζ_N, ζ^N_N = 1.
 For {F_k}_{k∈ℤ}, {G_k}_{k∈ℤ},

$$\mathcal{F}[F * G] = \mathcal{F}[F] \times \mathcal{F}[G].$$

FFT-based convolutions

- ► The discrete Fourier transform treats arrays as periodic.
- A naive application of the convolution theorem produces a cyclic convolution:

$$\{F *_N G\}_k \doteq \sum_{\kappa=0}^{N-1} F_{\kappa \mod N} G_{(k-\kappa) \mod N},$$

► These extra terms are called *aliases*.

Dealiasing techniques

I compare three dealiasing techniques:

- Phase-shift dealiasing
- Explicit zero-padding
- Implicit zero-padding

Phase-shift dealiasing

The Δ -shifted Fourier transform,

$$\mathcal{F}_{\Delta}^{-1}[F]_j \doteq \sum_{k=0}^{m-1} \zeta_N^{(j+\Delta)k} F_k,$$

produces a convolution with an aliasing error of opposite sign for $\Delta=1/2\text{:}$

$$\{F *_{\Delta} G\}_{k} = \mathcal{F}_{\Delta} \big[\mathcal{F}_{\Delta}^{-1}[F] \times \mathcal{F}_{\Delta}^{-1}[F] \big]$$

= $\sum_{\kappa=0}^{k} F_{\kappa} G_{k-\kappa} - \sum_{\kappa=k+1}^{m-1} F_{\kappa} G_{k-\kappa+m}.$

One recovers the linear convolution by computing

$$F * G = \frac{1}{2}[(F *_{N} G) + (F *_{\Delta} G)].$$

Malcolm Roberts and John C. Bowman

Phase-shift dealiasing

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta

Explicit zero-padding

Another option is to append zero-data to the input array. For non-centered data, pad from length N to length 2N:

$$\{\tilde{F}_k\}_{n=0}^{2N-1} = (F_0, F_1, \dots, F_{N-2}, F_{N-1}, \underbrace{0, \dots, 0}_{N})$$

$$(\widetilde{F} *_{2N} \widetilde{G})_k = \sum_{\ell=0}^{2N-1} \widetilde{F}_{\ell \pmod{2N}} \widetilde{G}_{(k-\ell) \pmod{2N}}$$

 $= \sum_{\ell=0}^{N-1} F_\ell \widetilde{G}_{(k-\ell) \pmod{2N}}$
 $= \sum_{\ell=0}^k F_\ell G_{k-\ell}.$

Centered data is padded from length 2N - 1 to length 3N.

Malcolm Roberts and John C. Bowman

Explicit zero-padding

Implicit Zero-padding

Implicit padding involves using a separate work array to compute the DFT:

$$f_x = \sum_{k=0}^{2N-1} \zeta_{2N}^{xk} F_k, \quad F_k = 0 \text{ if } k \ge N$$

is attained by computing

$$f_{2x} = \sum_{k=0}^{N-1} \zeta_N^{xk} F_k$$

and

$$f_{2x+1} = \sum_{k=0}^{N-1} \zeta_N^{xk} (\zeta_{2N}^x F_k).$$

Malcolm Roberts and John C. Bowman

Implicit zero-padding

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta

Comparison of 1D methods: centered data

For non-centered data:

	Phase-shift	Explicit	Implicit
	dealiasing	padding	padding
Memory	4 <i>N</i>	4 <i>N</i>	4 <i>N</i>
Complexity	6 <i>KN</i> log N	6 <i>KN</i> log N	6KN log N

For centered Hermitian data:

	Phase-shift dealiasing	Explicit padding	Implicit padding
Memory	4 <i>N</i>	3 <i>N</i>	3 <i>N</i>
Complexity	6KN log N	$\frac{9}{2}KN \log N$	$\frac{9}{2}KN \log N$

Comparison of zero-padding methods

Malcolm Roberts and John C. Bowman

Comparison of zero-padding methods

Hermitian-symmetric centered 1D convolution.

Malcolm Roberts and John C. Bowman

Comparison of zero-padding methods

Hermitian-symmetric centered 1D ternary convolution.

Malcolm Roberts and John C. Bowman

A *d*-dimensional convolution requires computing 2^d cyclic convolutions with different shifts.

For 3D pseudospectral simulations, one instead computes

 $F *_{N} G$

and

$$F *_{\Delta} G$$

with $\Delta = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. This removes singly-aliased terms. Doubly and triply aliased terms are removed by setting terms to zero with $k \ge \frac{2\sqrt{2}}{3}N \approx 0.94N$.

Explicit Zero-padding: multiple dimensions

Multi-dimensional convolutions need to be padded in each dimension.

Non-centered convolutions are padded from N^d to

 $(2N)^{d}$.

Centered convolutions are padded from $(2N-1)^d$ to

 $(3N)^{d}$.

Some transforms are performed on arrays or zeroes; these can be skipped, and the transform is referred to as *pruned*.

Explicit Zero-padding: multiple dimensions

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta

Implicit Zero-padding: multiple dimensions

The 2D FFT-based convolution algorithm is:

$$\mathcal{F}_y^{-1} o \mathcal{F}_x^{-1} o (\mathsf{multiply}) o \mathcal{F}_x o \mathcal{F}_y$$

Note that

$$\mathcal{F}_{_X}^{-1}
ightarrow ext{(multiply)}
ightarrow \mathcal{F}_{_X}$$

is just a convolution in the x-direction.

So the 2D convolution algorithm can be written

$${\mathcal F}_{{}_{\mathcal V}}^{-1} o ({}_{\mathsf X} ext{-convolution}) o {\mathcal F}_{{}_{\mathcal Y}}.$$

Since the implicitly dealiased convolution uses non-contiguous memory, we can re-use work arrays for sub-convolutions.

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta

Implicit Zero-padding: multiple dimensions

Malcolm Roberts and John C. Bowman

Comparison for Centered Convolutions

Method	Complexity	Memory Footprint	
Explicit	3. 2 ^d d KN ^d log N	2 ^{d+1} M ^d	
without Pruning	JEZ UNIN IOGN	2 /1	
Explicit	$6(2^d-1)$ KN ^d log N	2d+1 Md	
with Pruning		2 11	
Implicit	$6\left(2^d-1 ight)~{\it KN^d}\log {\it N}$	4 <i>N</i> ^d	

Comparison for Centered Convolutions

Method	Complexity	Memory Footprint	
Phase-Shift	$3 \cdot 2^{2d-1} dK N^d \log N$	2 ^{2d} N ^d	
Dealiasing		_ / •	
Partial	3, 2 ^d dK N ^d log N	Ωd+1 N/d	
Phase-shift	3.2 artiv log iv	2 IV	
Explicit	$\frac{3^{d+1}}{2}d\ KN^d\log N$	3 ^{<i>d</i>} <i>N</i> ^{<i>d</i>}	
Explicit with Pruning	$\frac{9}{2}\left(3^d-2^d\right)\ KN^d\log N$	3 ^{<i>d</i>} <i>N</i> ^{<i>d</i>}	
Implicit	$\frac{9}{2}\left(3^d-2^d\right)\ KN^d\log N$	$3 \cdot 2^{d-1} N^d$	

Malcolm Roberts and John C. Bowman

Hermitian-symmetric centered 2D convolution.

Malcolm Roberts and John C. Bowman

Hermitian-symmetric centered 2D ternary convolution.

Malcolm Roberts and John C. Bowman

Malcolm Roberts and John C. Bowman

Multi-threaded convolutions

Implicit dealiasing has been implemented with multiple threads.

Each sub-convolution requires its own work array.

With P processors, the memory increase is of the order

PN^{d-1}

for *d*-dimensional convolutions.

Implicit Zero-padding: multiple threads

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta

Malcolm Roberts and John C. Bowman

Malcolm Roberts and John C. Bowman

 One-dimensional convolutions on four cores are about 2 times as fast as on one core.

 Two-dimensional convolutions on four cores are about 3 times as fast.

 Three-dimensional convolutions on four cores are about 3.5 times as fast.

Malcolm Roberts and John C. Bowman

Malcolm Roberts and John C. Bowman

Summary of Results

- Implicit methods require much less work memory than is required by explicit methods .
- The implicit method had a speedup of up to 3.5 on four cores, while the explicit method sped-up of up to a factor of 3.
- The implicit method is around twice as fast as the explicit method for multidimensional convolutions.

Usage example

Computing the nonlinear source of the 2D incompressible Navier–Stokes equations in a vorticity formulation, which appears in Fourier space as

$$\sum_{p} \frac{p_{x}k_{y} - p_{y}k_{x}}{|k - p|^{2}} \omega_{p} \omega_{k-p},$$

is performed as follows:

$$conv2(ik_x\omega, ik_y\omega, ik_y\omega/k^2, -ik_x\omega/k^2).$$

One also has the option of passing work arrays to conv2, which can then be used elsewhere.

Conclusion

- Implicitly zero-padding multi-dimensional convolutions is faster and requires less memory than explicit routines.
- The algorithm has been successfully implemented on a shared-memory architecture with only a small increase in work memory.
- Convolution algorithms are available for complex non-centered data and centered Hermitian-symmetric data in 1D, 2D, and 3D.
- ► Ternary convolution algorithms are available for centered Hermitian-symmetric in 1D and 2D.

Future work

- ► A distributed-memory implementation based on openMPI.
- Improve multi-threaded parallelization.
- Convolutions on real data.
- Correlation routines.
- ► Auto-convolution/correlation routines.

Resources

```
FFTW++:
http://fftwpp.sourceforge.net
```

Asymptote: http://asymptote.sourceforge.net

Malcolm Roberts: http://www.math.ualberta.ca/~mroberts

Malcolm Roberts and John C. Bowman Aix-Marseille University, University of Alberta