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Convolutions

The convolution of the functions F and G is

o0

(F+6)0)= [ F(G(t-r)dr

—00

For example, if F = G = x(_1,1)(t)

Then F % G is:
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Convolutions

Out-of-focus images are a convolution.

Image filtering.

Digital signal processing.

Correlation analysis.

The Lucas—Lehmer primality test uses fast convolutions.

Pseudospectral simulations of nonlinear PDEs.
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Convolutions

The convolution of F = {Fy}kez and G = { Gy }kez is denoted
F * G, with

(FxG= Y FiGnlirim= Y _ FiGiy

4m €7 L EL

Properties:
» Commutativity: Fx G = G * F
» Associativity: *(F,G,H) = (F* G)*xH=F % (G * H),
where

*(Fa G, H)k = Z F€1 GZ2H€35k,€1+€2+€3

01,02 03E€Z

» ldentify element: Fxd=0xF =F
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Application: Correlation Analysis

The cross-correlation of F and G is F x G, with

(F*G)=Y Fi Gy
¢

This can be computed as the convolution of F; with G_.

Cross-correlation is useful in signal processing and data
analysis.

In this case, input data is {Fk}',y:_(}, or non-centered.
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Non-centered data

> Input data: {F,} - and {G}3 4.

» This produces non-centered convolutions:

k
(F*G)k:ZFgGk_g, k=0,...,N—1
£=0

» For non-centered data,
x(F,G,H)=Fx(G+H)=(F*G)=xH.
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Application: Pseudospectral simulations

» The incompressible 2D Navier—Stokes vorticity equation

%+(U-V)w:uv2w

is Fourier-transformed into

80.1;(
_ * ok 2 _ (2
— = E — W ws VK Wk, €kpg = (2P X q)0kipiq

» The nonlinearity becomes a convolution:

(F * G)k = Z Fkl Gk2 5k,k1,k2'

k1,ka
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Application: Pseudospectral simulations

> Input data {F,}p-",., is centered.

» It is also Hermitian-symmetric F_, = F.

» Hermitian symmetry < F![F]eR
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Centered data

> Input data: {F}p_"y.; and {Ge Ity

min (N—1,k+N—-1)

(F*G)y = Z FoeGi—g

¢{=max (—N+1,k—N+1)

» Considering Hermitian-symmetric data (F_x = F}), we
compute data for k > 0, so

(F G« Z FeGy—s.
(=k—N+1
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Centered data

Theorem

For centered data, x(F,G,H) # F x (G * H) # (F %« G) * H.

Proof.

Let N = 2.
*(Fa, Gb, Hc)l (Fa * (Gb * Hc)g)l
a|b]| ¢ all|b]| <
1|0 0 11010 0
01 0 0]1]1 0
00 1 0(1]0 1
11 -1 1101 -1
1|-1 1 1/0]-1 1
101 1 N/A
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FFT-based convolutions

The convolution sum involves O(N?) terms. Using FFTs,
we can compute a convolution in O(N log ) operations.

The inverse discrete Fourier transform (DFT) of {F} -,
is

N-1
fo = F ' FI =) CiFa
k=0
(ny = e is the Nt root of unity. Gy =¢Cn G =1

For { Fi}kez, {Gk}rez
FIF « 6] = FIF] < Fl6].
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FFT-based convolutions

» The discrete Fourier transform treats arrays as periodic.

» A naive application of the convolution theorem produces
a cyclic convolution:

N-1

{F *n G}k = Z meodNG(kf/{)modNa
k=0

» These extra terms are called aliases.
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Dealiasing techniques

| compare three dealiasing techniques:

» Phase-shift dealiasing
» Explicit zero-padding

» Implicit zero-padding
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Phase-shift dealiasing

The A-shifted Fourier transform,

Fal'lFly = Z Cn Y F

produces a convolution with an aliasing error of opposite sign
for A =1/2:

{F %4 G} = Fa|FA[F] x FA'[F]]

k m—1
= Z FHGk—n - Z FnGk—H—l-m-
k=0

r=k+1

One recovers the linear convolution by computing
1
FxG= 5[(F xy G) + (F x5 G)].
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Phase-shift dealiasing

(3 {Gihicy
L Fyy [ mEe ][ FHer ][ ARG
| Fxy G | | FxpG |

FxG
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Explicit zero-padding

Another option is to append zero-data to the input array.
For non-centered data, pad from length N to length 2/N:

{F 2Nt = (Fo, Fr, ..o Fn2, Fv-1,0,...,0)

n=0 T
N
N ~
(F % G Z ?(mod 2N) G(k—£)(mod 2N)
-0
No1o
= Z FeGk—e)(mod 2n)
-0
P

-0

Centered data is padded from length 2N — 1 to length 3N.
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Explicit zero-padding

(P ] [ {eid ]

{(Fh {03 | [ (G [

{25! | | {912V,

{fugn} V51 <

{(F Gk

{(FxO)uhs ]
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Implicit Zero-padding

Implicit padding involves using a separate work array to
compute the DFT:

2N—-1

fo=> GhFio Fi=0ifk>N
k=0

is attained by computing
N—-1
->
k=0

and

f2x+1 Z C CZN Fk
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Implicit zero-padding

{Filiso {Gitizo'

l {f 305 neven ‘ l {f 35 nodd ‘ l {9,105}, neven ‘ l {g. 1=, nodd

l {fngn}ggolvneven‘ l {fngn}iv;017n0dd ‘

{(F * G)hiso!
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Comparison of 1D methods: centered data

For non-centered data:

Phase-shift | Explicit Implicit

dealiasing padding padding
Memory 4N 4N 4N
Complexity | 6KNlog N | 6KNlog N | 6KNlog N

For centered Hermitian data:

Phase-shift | Explicit Implicit

dealiasing padding padding
Memory 4N 3N 3N
Complexity | 6KN log N %KN log N gKN log N
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Comparison of zero-padding methods

6 F

— o —explicit

—a— implicit

102 10*° 10* 10> 106
N
Complex non-centered 1D convolution.
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Comparison of zero-padding methods
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Hermitian-symmetric centered 1D convolution.
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Comparison of zero-padding methods
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Hermitian-symmetric centered 1D ternary convolution.
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Phase-shift dealiasing: multiple dimensions

A d-dimensional convolution requires computing 29 cyclic
convolutions with different shifts.
For 3D pseudospectral simulations, one instead computes

Fx, G

and Fxa G

with A = (3, 3,1). This removes singly-aliased terms.

Doubly and triply aliased terms are removed by setting terms
to zero with k > 22N ~ 0.94N.
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Explicit Zero-padding: multiple dimensions

Multi-dimensional convolutions need to be padded in each
dimension.
Non-centered convolutions are padded from N9 to

(2N)°.
Centered convolutions are padded from (2N — 1)9 to
(3N)“.

Some transforms are performed on arrays or zeroes; these can
be skipped, and the transform is referred to as pruned.
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Explicit Zero-padding: multiple dimensions

FE | EE

e b4
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Implicit Zero-padding: multiple dimensions

The 2D FFT-based convolution algorithm is:
F, 1= Fol— (multiply) = F — F,
Note that . _
F, - — (multiply) — F;
is just a convolution in the x-direction.

So the 2D convolution algorithm can be written
F,* — (x-convolution) — F,.

Since the implicitly dealiased convolution uses non-contiguous
memory, we can re-use work arrays for sub-convolutions.
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Implicit Zero-padding: multiple dimensions
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Comparison for Centered Convolutions

] Method \ Complexity \ Memory Footprint \
Explicit _od d d+1 pyd
without Pruning 3-27d KN log N 270N
Explicit d d d+1 pd
with Pruning 0 (2 B 1) KV log N 20N
Implicit 6(2¢—1) KN?log N 4 N9
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Comparison for Centered Convolutions

Method \ Complexity | Memory Footprint
Phase-Shift | 5 241 gene jog 0 02d pyd
Dealiasing

Partial d d di1pnd
Phase-shift 3-27dKN" log N 2N
EXp||C|t 3d+1 dnid
Explicit 9 (2d _ d d dnid

with Pruning | 2 (3 2 ) KV log N 3N
Implicit g (3" — 2"’) KN9 log N 3.29-1N9
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Performance: multiple dimensions
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Complex non-centered 2D convolution.
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Performance: multiple dimensions
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Hermitian-symmetric centered 2D convolution.
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Performance: multiple dimensions
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Hermitian-symmetric centered 2D ternary convolution.
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Performance: multiple dimensions
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Complex non-centered 3D convolutions.
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Multi-threaded convolutions

Implicit dealiasing has been implemented with multiple

threads.
Each sub-convolution requires its own work array.
With P processors, the memory increase is of the order

PNI-1

for d-dimensional convolutions.
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Implicit Zero-padding: multiple threads
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Implicit multi-threading performance
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Non-centered 1D convolution.
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Implicit multi-threading performance
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Implicit multi-threading performance
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Centered 1D ternary convolution.
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Implicit multi-threading performance
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Non-centered 2D convolution.
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Implicit multi-threading performance
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Centered 2D convolution.
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Implicit multi-threading performance
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Centered ternary 2D convolution.
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Implicit multi-threading performance
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Implicit multi-threading performance
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Centered 3D convolution.
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Implicit multi-threading performance

» One-dimensional convolutions on four cores are about 2
times as fast as on one core.

» Two-dimensional convolutions on four cores are about 3
times as fast.

» Three-dimensional convolutions on four cores are about
3.5 times as fast.
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Non-centered 2D convolution.
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Multiple threads: explicit vs. implicit
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Multiple threads: explicit vs. implicit
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Centered ternary 2D convolution.
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Multiple threads: explicit vs. implicit
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Non-centered 3D convolution.
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Summary of Results

» Implicit methods require much less work memory than is
required by explicit methods .

» The implicit method had a speedup of up to 3.5 on four
cores, while the explicit method sped-up of up to a factor
of 3.

» The implicit method is around twice as fast as the explicit
method for multidimensional convolutions.
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Usage example

Computing the nonlinear source of the 2D incompressible
Navier-Stokes equations in a vorticity formulation, which
appears in Fourier space as

is performed as follows:
conv2(ikw, ikyw, ik,w/k?, —ikw/k?).

One also has the option of passing work arrays to conv2,
which can then be used elsewhere.
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Conclusion

Implicitly zero-padding multi-dimensional convolutions is
faster and requires less memory than explicit routines.
The algorithm has been successfully implemented on a
shared-memory architecture with only a small increase in
work memory.

Convolution algorithms are available for complex
non-centered data and centered Hermitian-symmetric
data in 1D, 2D, and 3D.

Ternary convolution algorithms are available for centered
Hermitian-symmetric in 1D and 2D.
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Future work

A distributed-memory implementation based on openMPI.
Improve multi-threaded parallelization.

Convolutions on real data.

Correlation routines.

Auto-convolution/correlation routines.
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Resources
FFTW++:
http://fftupp.sourceforge.net

Asymptote:
http://asymptote.sourceforge.net

Malcolm Roberts:
http://www.math.ualberta.ca/~mroberts
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