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Properties

Convolutions are binary operations on the set of L2 functions.
For f , g : Rd → F, with F = R or C,

I Commutative: f ∗ g = g ∗ f .
I Associative: (f ∗ g) ∗ h = f ∗ (g ∗ h).
I Identity element: Dirac delta:

f ∗ δ = δ ∗ f = f .

I Transitive: (f + g) ∗ h = f ∗ g + g ∗ h.
I Easily extendable to functions on Rd → F.
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Convolution Theorem

Let

F (k) =

∫
dx e2πi kx f (x)

.
= F [f ](k)

and G (k) = F [g ](k). Then

F [f ∗ g ](k) =
∫

dx e2πi kx
∫

dy f (y)g(x − y)

=

∫
dy

∫
dx ′ f (y)e2πi k(y+x ′)g(x ′)

=

∫
dy e2πi ky f (y)

∫
dx ′ e2πi kx

′
g(x ′)

= F [f ](k)×F [g ](k).
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Discrete convolutions

For f , g ∈ `2,

(f ∗ g)n =
n∑
`=0

f`gn−`

=
n∑

`1=0

n∑
`2=0

f`1g`2δ`1+`2,n

This requires O(N2) operations for data of length N .

It is better to compute using a fast Fourier transform using
O(N logN) operations:

f ∗ g = F−1(F [f ]×F [g ]).
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Non-centered data

Data is often non-centered, i.e.

{fn}N−1n =0 : {0,N − 1} → F.

Binary convolutions can be easily extended to higher-order:

∗(f , g , h)n =
N−1∑

a,b,c=0

fagbhdδa+b+c,n

= f ∗ (g ∗ h).

Most applications use this type of data.
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Discrete Convolution Theorem

Let ζN = e2πi/N denote the N th root of unity.
The inverse Fourier transform of {Fk}N−1k=0 is

fj = F−1[Fk ]j =
N−1∑
k=0

ζ jkN Fk

The orthogonality of the transform relies on the fact that

N−1∑
j=0

ζ`jN =

{
N if ` = sN for s ∈ Z,
1−ζ`NN
1−ζ`N

= 0 otherwise.
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Aliasing Errors

For non-centered data, we get

N−1∑
j =0

ζ−kjN FkGk =
N−1∑
j=0

ζ−kjN

(
N−1∑
p=0

ζkpN fp

)(
N−1∑
q=0

ζkqN gq

)

=
N−1∑
p=0

N−1∑
q=0

fpgq

N−1∑
j=0

ζ
k(p+q−j)
N

= N
∑
s∈Z

N−1∑
p=0

fpgq−j+sN

The terms with s 6= 0 are called aliasing errors.
The product is a cyclic convolution, with indices modN .
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Explicit zero-padding

The convolution can be dealiased by extending the input data
with a bunch of zeros:
Pad from length N to length 2N :

{F̃k}2N−1n =0 = (F0,F1, . . . ,FN−2,FN−1, 0, . . . , 0︸ ︷︷ ︸
N

)

(F̃ ∗2N G̃ )k =
2N−1∑
`=0

F̃`(mod 2N)G̃(k−`)(mod 2N)

=
N−1∑
`=0

F`G̃(k−`)(mod 2N)

=
k∑
`=0

F`Gk−`.

Multidimensional convolutions are padded in each direction.
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Explicit zero-padding

{Fk}N−1
k=0 {Gk}N−1

k=0

{Fk}N−1
k=0 {0}N−1

k=0 {Gk}N−1
k=0 {0}N−1

n=0

{fn}2N−1
n=0 {gn}2N−1

n=0

{fngn}2N−1
n=0

{(F ∗G)k}N−1
k=0

{(F ∗G)k}N−1
k=0
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Implicit zero-padding

Implicit padding involves using a separate work array to
compute the DFT:

fx =
2N−1∑
k=0

ζxk2NFk , Fk = 0 if k ≥ N

is attained by computing

f2x =
N−1∑
k=0

ζxkN Fk

and

f2x+1 =
N−1∑
k=0

ζxkN (ζx2NFk).
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Implicit zero-padding

{Fk}N−1
k=0 {Gk}N−1

k=0

{fn}N−1
n=0 , n even {fn}N−1

n=0 , n odd {gn}N−1
n=0 , n even {gn}N−1

n=0 , n odd

{fngn}N−1
n=0 , n even {fngn}N−1

n=0 , n odd

{(F ∗G)k}N−1
k=0
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Convolutions on Rd

For 2D convolutions, one performs FFTs in each direction:

F−1y

{
F−1x

(
Fx

[
Fy{f }

]
×Fx

[
Fy{g}

])}
.

However, an x-convolution is just

F−1x

(
Fx [f ]×Fx [g ]

)
.

Which is to say that we perform the operation

Fy → x-convolution→ F−1y .

This allows us to re-use work arrays with subconvolutions
when using implicit padding.
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Implicit Zero-padding

F G
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Implicit Zero-padding

F−1
x [F ] F−1

x [F ] F−1
x [G] F−1

x [G]
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Implicit Zero-padding
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Implicit Zero-padding
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Implicit Zero-padding
F

−
1

x
[F

∗G
]

F
−
1

x
[F

∗G
]

John Bowman and Malcolm Roberts University of Alberta, Aix-Marseille University



Implicit Zero-padding

F−1
x [F ∗G] F−1

x [F ∗G]
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Implicit Zero-padding

F ∗G
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Comparison of techniques: non-centered

I Implicit padding uses (
1

2

)d−1

the memory of explicit padding.

I The algorithm is about twice as fast for d > 1.

I Implicit and explicit padding exhibit similar numerical
error.
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Non-centered data

Consider the PDE

(1)
∂u

∂t
= u × u.

The Fourier transform of (1) is

∂U

∂t
= U ∗ U ,

where U = F [u], and, for periodic domains,

U = {Uk}N−1k=−N+1,

and U−k = U∗k , where
∗ denotes complex conjugation: the

data exhibits Hermitian symmetry.
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Centered convolutions

The convolution of such input F and G is

(F ∗ G )k =
m−1∑

`=k−m+1

F`Gk−`

Inputs are zero-padded using a “2/3” rule: the input data,
{Fk}N−1k=−N+1, is padded from length 2N − 1 to length 3N .

Higher-order convolutions (e.g. ternary) are not associative:

∗(F ,G ,H) 6= F ∗ (G ∗ H),

and must be computed all-at-once and further padded.
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Comparison of techniques: centered

I Implicit padding uses (
2

3

)d−1

the memory of explicit padding.

I The algorithm is about twice as fast for d > 1.

I Implicit and explicit padding exhibit similar numerical
error.

I The advantage of implicit padding increases for
higher-order convolutions.
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MPI

Implicit padding skips transforms on zero-data while
maintaining a good data structure. This also reduces the
communication cost using MPI.

I Memory savings translate into communication savings.

I Communication done via FFTW’s MPI transpsoe

I 3D convolutions can be done with either 1D or 2D
decompositions.

I Parallelization is hybrid OpenMP/MPI.
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MPI
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MPI
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MPI
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MPI
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MPI
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MPI: speed
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2D convolution on 192 cores.
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MPI: speed
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Conclusions

I Implicitly dealiased convolutions are faster and use less
memory.

I A multi-threaded implementation is available at
fftwpp.sourceforge.net, using FFTW for Fourier
transforms.

I Written in C++, wrappers for C, Python, and Fortran.

I A hybrid OpenMP/MPI implementation is soon to be
released.
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Future Work

I Finalize tests and release MPI version.

I Convolutions on real data.

I Special cases (e.g. self-convolution).

I Impliment in as part of a MPI pseudospectral solver.

I Can implicit padding be used for phase-shift dealiasing?

I Can we extend implicit padding to other basis functions?
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