Implicitly Dealiased Convolutions for DNS: Preliminary MPI results

John Bowman and Malcolm Roberts

University of Alberta, Aix-Marseille University

Euromech 542, 2013-01-17

Properties

Convolutions are binary operations on the set of L^2 functions. For $f, g : \mathbb{R}^d \to \mathbb{F}$, with $\mathbb{F} = \mathbb{R}$ or \mathbb{C} ,

- Commutative: f * g = g * f.
- Associative: (f * g) * h = f * (g * h).
- Identity element: Dirac delta:

$$f * \delta = \delta * f = f.$$

- Transitive: (f + g) * h = f * g + g * h.
- Easily extendable to functions on $\mathbb{R}^d \to \mathbb{F}$.

Convolution Theorem

Let

$$F(k) = \int dx \, e^{2\pi i \, kx} f(x) \doteq \mathcal{F}[f](k)$$

and $G(k) = \mathcal{F}[g](k)$. Then

$$\mathcal{F}[f * g](k) = \int dx \, e^{2\pi i \, kx} \int dy \, f(y)g(x - y)$$

= $\int dy \int dx' \, f(y)e^{2\pi i \, k(y + x')}g(x')$
= $\int dy \, e^{2\pi i \, ky}f(y) \int dx' \, e^{2\pi i \, kx'}g(x')$
= $\mathcal{F}[f](k) \times \mathcal{F}[g](k).$

John Bowman and Malcolm Roberts

Discrete convolutions

For $f, g \in \ell^2$,

$$(f * g)_n = \sum_{\ell=0}^n f_\ell g_{n-\ell} \ = \sum_{\ell_1=0}^n \sum_{\ell_2=0}^n f_{\ell_1} g_{\ell_2} \delta_{\ell_1+\ell_2,n}$$

This requires $\mathcal{O}(N^2)$ operations for data of length N.

It is better to compute using a fast Fourier transform using $\mathcal{O}(N \log N)$ operations:

$$f * g = \mathcal{F}^{-1}(\mathcal{F}[f] imes \mathcal{F}[g]).$$

Non-centered data

Data is often non-centered, i.e.

$${f_n}_{n=0}^{N-1}: {0, N-1} \to \mathbb{F}.$$

Binary convolutions can be easily extended to higher-order:

$$*(f,g,h)_n = \sum_{a,b,c=0}^{N-1} f_a g_b h_d \delta_{a+b+c,n}$$
$$= f * (g * h).$$

Most applications use this type of data.

John Bowman and Malcolm Roberts

Discrete Convolution Theorem

Let $\zeta_N = e^{2\pi i/N}$ denote the N^{th} root of unity. The inverse Fourier transform of $\{F_k\}_{k=0}^{N-1}$ is

$$f_j = \mathcal{F}^{-1}[\mathcal{F}_k]_j = \sum_{k=0}^{N-1} \zeta_N^{jk} \mathcal{F}_k$$

The orthogonality of the transform relies on the fact that

$$\sum_{j=0}^{N-1} \zeta_N^{\ell j} = \begin{cases} N & \text{if } \ell = sN \text{ for } s \in \mathbb{Z}, \\ \frac{1-\zeta_N^{\ell N}}{1-\zeta_N^{\ell}} = 0 & \text{otherwise.} \end{cases}$$

John Bowman and Malcolm Roberts

Aliasing Errors

For non-centered data, we get

$$\sum_{j=0}^{N-1} \zeta_N^{-kj} F_k G_k = \sum_{j=0}^{N-1} \zeta_N^{-kj} \left(\sum_{p=0}^{N-1} \zeta_N^{kp} f_p \right) \left(\sum_{q=0}^{N-1} \zeta_N^{kq} g_q \right)$$
$$= \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} f_p g_q \sum_{j=0}^{N-1} \zeta_N^{k(p+q-j)}$$
$$= N \sum_{s \in \mathbb{Z}} \sum_{p=0}^{N-1} f_p g_{q-j+sN}$$

The terms with $s \neq 0$ are called *aliasing errors*. The product is a cyclic convolution, with indices mod N.

John Bowman and Malcolm Roberts

Explicit zero-padding

The convolution can be *dealiased* by extending the input data with a bunch of zeros: Pad from length N to length 2N:

$$\{\widetilde{F}_k\}_{n=0}^{2N-1} = (F_0, F_1, \dots, F_{N-2}, F_{N-1}, \underbrace{0, \dots, 0}_{N})$$

$$(\widetilde{F} *_{2N} \widetilde{G})_k = \sum_{\ell=0}^{2N-1} \widetilde{F}_{\ell \pmod{2N}} \widetilde{G}_{(k-\ell) \pmod{2N}}$$

 $= \sum_{\ell=0}^{N-1} F_\ell \widetilde{G}_{(k-\ell) \pmod{2N}}$
 $= \sum_{\ell=0}^k F_\ell G_{k-\ell}.$

Multidimensional convolutions are padded in each direction.

John Bowman and Malcolm Roberts

Explicit zero-padding

John Bowman and Malcolm Roberts

Implicit padding involves using a separate work array to compute the DFT:

$$f_x = \sum_{k=0}^{2N-1} \zeta_{2N}^{xk} F_k, \quad F_k = 0 \text{ if } k \ge N$$

is attained by computing

$$f_{2x} = \sum_{k=0}^{N-1} \zeta_N^{xk} F_k$$

and

$$f_{2x+1} = \sum_{k=0}^{N-1} \zeta_N^{xk} (\zeta_{2N}^x F_k).$$

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

Convolutions on \mathbb{R}^d

For 2D convolutions, one performs FFTs in each direction:

$$\mathcal{F}_{y}^{-1}\Biggl\{\mathcal{F}_{x}^{-1}\Biggl(\mathcal{F}_{x}\Bigl[\mathcal{F}_{y}\lbrace f\rbrace\Bigr]\times\mathcal{F}_{x}\Bigl[\mathcal{F}_{y}\lbrace g\rbrace\Bigr]\Biggr)\Biggr\}.$$

However, an x-convolution is just

$$\mathcal{F}_{X}^{-1}\Big(\mathcal{F}_{X}[f]\times\mathcal{F}_{X}[g]\Big).$$

Which is to say that we perform the operation

$$\mathcal{F}_y
ightarrow x ext{-convolution}
ightarrow \mathcal{F}_y^{-1}$$
 .

This allows us to re-use work arrays with subconvolutions when using implicit padding.

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

Comparison of techniques: non-centered

Implicit padding uses

$$\left(\frac{1}{2}\right)^{d-1}$$

the memory of explicit padding.

- The algorithm is about twice as fast for d > 1.
- Implicit and explicit padding exhibit similar numerical error.

Non-centered data

Consider the PDE

$$\frac{\partial u}{\partial t} = u \times u. \tag{1}$$

The Fourier transform of (1) is

$$\frac{\partial U}{\partial t} = U * U,$$

where $U = \mathcal{F}[u]$, and, for periodic domains,

$$U = \{U_k\}_{k=-N+1}^{N-1},$$

and $U_{-k} = U_k^*$, where * denotes complex conjugation: the data exhibits Hermitian symmetry.

Centered convolutions

The convolution of such input F and G is

$$(F*G)_k = \sum_{\ell=k-m+1}^{m-1} F_\ell G_{k-\ell}$$

Inputs are zero-padded using a "2/3" rule: the input data, $\{F_k\}_{k=-N+1}^{N-1}$, is padded from length 2N - 1 to length 3N.

Higher-order convolutions (e.g. ternary) are not associative:

$$*(F,G,H) \neq F * (G * H),$$

and must be computed all-at-once and further padded.

John Bowman and Malcolm Roberts

Comparison of techniques: centered

Implicit padding uses

$$\left(\frac{2}{3}\right)^{d-1}$$

the memory of explicit padding.

- The algorithm is about twice as fast for d > 1.
- Implicit and explicit padding exhibit similar numerical error.
- The advantage of implicit padding increases for higher-order convolutions.

John Bowman and Malcolm Roberts

Implicit padding skips transforms on zero-data while maintaining a good data structure. This also reduces the communication cost using MPI.

- Memory savings translate into communication savings.
- Communication done via FFTW's MPI transpsoe
- 3D convolutions can be done with either 1D or 2D decompositions.
- ► Parallelization is hybrid OpenMP/MPI.

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

John Bowman and Malcolm Roberts

MPI: speed

John Bowman and Malcolm Roberts

MPI: speed

John Bowman and Malcolm Roberts

Conclusions

- Implicitly dealiased convolutions are faster and use less memory.
- A multi-threaded implementation is available at fftwpp.sourceforge.net, using FFTW for Fourier transforms.
- ▶ Written in C++, wrappers for C, Python, and Fortran.
- A hybrid OpenMP/MPI implementation is soon to be released.

Future Work

- ► Finalize tests and release MPI version.
- Convolutions on real data.
- ► Special cases (e.g. self-convolution).
- Impliment in as part of a MPI pseudospectral solver.
- Can implicit padding be used for phase-shift dealiasing?
- Can we extend implicit padding to other basis functions?