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Governing Equations: MHD

Let u be the velocity of an electric field with magnetic field B.
The velocity changes as

∂u
∂t

= u × ω + j ×B −∇P + ν∇2u

where ω = ∇× u is the vorticity, j = ∇×B is the current
density, P the pressure, and ν is the kinematic viscosity.
The magnetic field changes as

∂B
∂t

= ∇× (u ×B) + λ∇2B

where λ is the magnetic diffusivity.
We require the velocity and magnetic field be solenoidal:

∇ · u = 0 ∇ ·B=0
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Boundary Conditions and Geometry

I The fluid is evolved in a periodic
cylinder denoted Ωf.

I The velocity is no-slip:
I u|∂Ωf

= 0

I The magnetic field is forced
towards a helix:

I B⊥|∂Ωf
= 0

I Bz |∂Ωf
= B0

I Bθ|∂Ωf
= Bc

The wrapping number of the forcing
(the inverse safety factor) is set to
integer values.
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Boundary Conditions and Geometry

We can also impose an elliptical
cross-section, shown here with
eccentricity 1/

√
2.

Using a level-set approach (for
example), very general geometries
may be described.

As in the circular case, wrapping
numbers are integral.
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Initial Conditions and Physical Parameters

Physical parameters:

I ν = 4.5× 10−2

I λ = 4.5× 10−2

I Prandtl number is unity.

Geometrical parameters:

I Major radius is set to 1.

I The length of the cylinder in the z-direction is 8.

Initial conditions:

I The magnetic field matches the boundary conditions.

I The velocity field is perturbed with a random field.

I The perturbation has kinetic energy of order 10−6.
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Numerical Method

The source terms are computed via the pseudospectral
method.

Boundary conditions are imposed via the penalty method.

The system is advanced in time using an Adams-Bashforth
method, with Laplacian terms treated implicitly.
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Pseudospectral Method

Let ûk and B̂k be the Fourier transform of u and B.
The Fourier transform of the governing equations are

∂ûk
∂t

= F (u × ω) + F (j ×B)− ikP̂k − νk
2ûk ,

with the pressure determined via ∇ · u = 0 ⇐⇒ ik · ûk = 0,
and

∂B̂k
∂t

= ik ×F (u ×B)− λk2B̂k

The nonlinear terms are computed by:

I 2/3-padding the input data

I transforming from Fourier space to physical space

I multiplying the fields

I transforming back into Fourier space.
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Pseudospectral Method

The use of FFTs make the pseudospectral method efficient.

FFTs can only be used when the computational domain Ω is a
periodic box.

Ωs

Ωf

We embed the fluid domain Ωf inside Ω.

The solid domain is Ωs = Ω/Ωf.

We penalize the motion of the fluid in the
solid domain with penalization parameter η.
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Penalty Method

Let χΩs be the characteristic function for Ωs.
The penalized velocity evolution equations is

∂u
∂t

= u × ω + j ×B −∇P + ν∇2u−χΩs

η
u,

corresponding to homogeneous Dirichlet boundary conditions.
The penalized evolution equation for B is

∂B
∂t

= ∇× (u ×B) + λ∇2B−χΩs

η
(B −Bs)

where Bs is the penalization field.
Source terms are projected onto the solenoidal manifold via a
Helmholtz decomposition.
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Penalty Method

Advantages:

I Proof of convergence, O
(√

η
)
.

I Deals with complex geometries.

I Easy to implement.

Disadvantages:

I Only first-order accurate in space.

I Stiff in time: dt ≈ η.

I Theory mostly developed for Dirichlet boundary
conditions.

Current Directions:

I Improving convergence and reducing stiffness.

I Generalizing boundary conditions.
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Determining the Penalty Field

The penalty field Bs should

I match the boundary conditions at ∂Ωf,

I be solenoidal,

I and be as regular as possible.
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Determining the Penalty Field

For circular geometries, we can make use of the fact that, in
cylindrical coordinates,

r̂ ·Bs = 0,

so
(1)Bs = Bc f (r)θ̂ + B0ẑ ,

with f (r) a smooth function that is equal to 1 at the boundary
and goes to zero within the periodic box.

The formulation given in equation (1) is necessarily solenoidal.

Similarly, any Bs corresponding to solid-body motion is
guaranteed to be both smooth and solenoidal.

Malcolm Roberts Aix-Marseille University



Determining the Penalty Field

We can also find such fields in general.
Suppose that we are given boundary conditions vbc on ∂Ωf for
the field v .
Suppose also that ∫

∂Ωf

vbc · n̂ ds = 0,

so that the boundary conditions are consistent with a
solenoidal field v .
We find the penalization field v s in the computational domain
Ω by solving

(2)κ∇2v s−
χ∂Ωf

ητ
(v s − vbc) = 0.
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Determining the Penalty Field

We solve equation (2) using by pseudo-time-stepping and the
pseudospectral method.

The field is made solenoidal by performing a Helmholtz
decomposition on v s after each pseudo-time-step.

Pseudo-time-stepping is stopped when

‖v s − vbc‖∞,∂Ωf
< 0.2×√η,

which implies that the error in the boundary conditions is less
than the expected error from the penalty method.
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Simulations: Circular Cross-Section

Simulations were performed on ada.idris.fr and
turing.idris.fr.

I For low forcing amplitudes, the axial velocity was
negligible.

I Simulations with ‖(B0,Bc) ‖' 15 showed exponential
growth of the axial kinetic energy.

I The axial kinetic energy eventually reached a stable
plateau.

I Increasing wrapping number decreased the axial kinetic
energy growth rate.

I The velocity field self-organized into helical pairs.
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Simulations: Circular Cross-Section

0 10 20
time

10−5

10−3

10−1

101

103

E
k
in

Kinetic energy as a function of time for different forcing
parameters.
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Simulations: Circular Cross-Section
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Axial velocity for Bc = 7.06, B0 = 4.5, wrapping number 2.
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Simulations: Circular Cross-Section

Axial velocity for Bc = 7.06, B0 = 4.5, wrapping number 2.
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Simulations: Circular Cross-Section

3

-3

−4

−2

0

2

4

Axial velocity for Bc = 70.6, B0 = 4.5, wrapping number 20.
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Simulations: Circular Cross-Section

Axial velocity for Bc = 70.6, B0 = 4.5, wrapping number 20.
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Simulations: Circular Cross-Section

Simulations with circular cross sections exhibited:

I Growth of axial kinetic energy for large forcing amplitude.

I Growth was positively correlated with forcing wrapping
number.

I The flow self-organized into a variety of helical modes.

I Large enough energy growth produced a transition to
turbulence.

I Turbulent flows were composed of a high-mode boundary
layer with a low-order helical mode away from the
boundary.

Circular geometries produce helical modes.

By removing symmetries, what happens to the helical modes?
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Simulations: Elliptical Cross-Section

Increasing eccentricity suppressed growth of axial kinetic
energy.

The first instance of self-organization accrued at
‖(B0,Bc) ‖= 60 for our simulations.

The mode azimuthal mode-number was much larger than in
the circular case.
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Simulations: Elliptical Cross-Section
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Axial velocity for Bc = 49.7, B0 = 33.6, wrapping number 1.
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Simulations: Elliptical Cross-Section

Axial velocity for Bc = 49.7, B0 = 33.6, wrapping number 1.
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Simulations: Elliptical Cross-Section

The elliptical geometry

I Suppressed axial kinetic energy growth.

I Also exhibited self-organization into helical modes.

I The resulting helical structures had a larger azimuthal
modenumber.

I Axial velocity tended to be concentrated farther away
from the z-axis than in the circular case.
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Alignment of fields
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Alignment of B and j (magnetic helicity).
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Alignment of fields
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Alignment of u and ω (kinetic helicity).
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Alignment of fields
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Alignment of u and B (cross helicity).
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Summary: Alignment of Fields

I B and j tend to anti-alignment, more so with increasing
turbulence.

I u and ω tend toward alignment, less so with increasing
turbulence.

I u and B tend to align or anti-align, very strongly with
increasing turbulence.
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Conclusions

The goal of this work is the simulation of complex MHD flows.
The fluid was confined to a periodic cylinder and the magnetic
field helically forced at the boundary.

I The velocity self-organized into helices for sufficiently
strong forcing amplitude.

I These helical modes survived even in turbulent regimes.

I Changing the cross-section of the cylinder dramatically
changed the flow structure.

Merci pour votre attention!
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