
So You Think You’re Fast:

Performance Evaluation of Two

High-Performance Software Libraries

Malcolm Roberts

University of Strasbourg

Journée du Labex, 2015-12-14



Outline

‘

I schnaps

I A discontinuous Galerkin solver in OpenCL
I How can we evaluate it’s performance?

I Roofline
I Profiling
I Benchmarking

I fftw++

I A wrapper for FFTW
I Implicitly dealiased convolutions
I How can we compare two different algorithms?

Malcolm Roberts



schnaps

Solveur pour les lois de Conservation Hyperboliques
Non-linéaires Appliqué aux PlasmaS

Solver for Conservative Hyperbolic Non-linear systems for
PlasmaS

I Discontinuous Galerkin solver for hyperbolic equations

I Written in OpenCL for GPUs, CPUs, etc.

I gforge.inria.fr/projects/schnaps

Collaborators: Philippe Helluy, Emmanuel Franck, Michel
Massaro, Bruno Weber, . . .

Malcolm Roberts



schnaps

Consider the general hyperbolic equation

∂tw +
k=d∑
k=1

∂kF
k(w) = S , (1)

in d = dimensions. F is the flux and S the source term.

Examples:

I Navier–Stokes equations

I Maxwell’s equations

I MHD

I Vlasov equations

We would like to numerically solve such equations in complex
geometries with as general boundary conditions as possible.

Malcolm Roberts



schnaps example: Vlasov equations for fusion

Malcolm Roberts



schnaps: Discontinuous Galerkin Method

The physical domain is divided into cells.

In each cell L, w is projected onto a finite set of basis
functions ψL

i (x):

(2)w(x , t) ≈
∑
i∈L

w i
L(t)ψL

i (x).

The evolution equation is approximated by∫
L

∂twψ
L
i −

∫
L

F (w ,w ,∇ψL
i ) +

∫
∂L

F (wL,wR ,nLR)ψL
i = SL

i ,

(3)
where nLR is the normal vector from cell L to cell R .
The DG formulation is good for conserving invariants.
Elements can be curved and meshes can be non-conformal.

Malcolm Roberts



schnaps: Macrocell/subcell

Malcolm Roberts



schnaps

There computational stages are:

1. Initialize the buffer.

2. Compute boundary flux.

3. Compute macrocell interface flux.

4. Compute subcell interfaces flux.

5. Compute volumic flux.

6. Compute source term.

7. Apply the mass division.

8. Time-step.

Malcolm Roberts



schnaps example simulation: Maxwell’s equations

Malcolm Roberts



schnaps example simulation: Maxwell’s equations

Malcolm Roberts



schnaps: roofline analysis

Roofline: Count FLOPs, count i/o, compare with
manufacturer specs.

I Compare the achieved vs theoretical FLOPs and i/o.
I Manufacturer specifications are available for most GPUs.

Malcolm Roberts



schnaps: roofline analysis

0

200

400

600

800

G
F
L
O
P
/s

DGVol DGFlux DGMass Total

Malcolm Roberts



schnaps: profiling

OpenCL provides profiling tools.

I We can find the start and end times for a kernel

I Reports ns time (accurate to ≈ 50ns).

Profiling is complicated in an OpenCL environment:

I Kernel execution might be overlapped

I Kernels are launched into a queue, and we need to wait
until it’s done before asking for the execution time.

Malcolm Roberts



schnaps: profiling

Total execution times for all kernels:

0

10

20

T
im

e
(s
)

DGVol DGFlux DGMass Init Boundary Interface RK

Malcolm Roberts



schnaps: profiling

Total execution times with mass pre-computed:

0

10

20

T
im

e
(s
)

DGVol DGFlux DGMass Init Boundary Interface RK

Malcolm Roberts



schnaps: benchmarking the CPU and the GPU

Comparison of CPU and the GPU speeds using clFFT:

10−4

10−3

ti
m
e
(s
)

102 103

N

12 CPU
1 GPU

Malcolm Roberts



schnaps: benchmarking the CPU and the GPU

Comparison of schnaps on CPU and the GPU:

10−2

10−1

100

ti
m
e
p
er

R
K
(s
)

101

N

12 CPU
1 GPU

Malcolm Roberts



schnaps: other geometries

The timing examples were for a mesh with one macrocell.
The macrocell interfaces are complicated:

I Non-coalescent memory access

I Changes of geometry

I Parallel computation not straightforward.

Two options for parallelizing macrocell interfaces:

I In-place, use map-colouring for parallelism

I Extraction, computation in parallel, insertion.

Also reducing computational complexity.

Malcolm Roberts



schnaps: other geometries

Malcolm Roberts



schnaps: other geometries

0

50

100

150

T
im

e
(s
)

DGVol DGFlux DGMass Init Boundary Interface RK

Malcolm Roberts



schnaps: summary

I Roofline predicts how fast your code will be.

I Profiling tells you where you need to work.

I Benchmarking tells you your speed.

I Intra-macrocell code looks ok.

I Inter-macrocell code needs work.

Malcolm Roberts



fftw++

fftw++ offers:

I C++ wrappers for FFTW

I Implementations of implicitly dealiased convolutions.

I New MPI routines in 2.0:
I Adaptive recursive non-blocking transpose
I MPI version of convolutions and FFTs
I 2D data decomposition

I fftwpp.sf.net.

Collaborator: John Bowman.

We need to test the speed of these routines.

Malcolm Roberts



fftw++

Timing 1D convolution on Atlas:

5

10

15
ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N
Malcolm Roberts



fftw++

Histogram of execution times on Atlas:

0

50

100

150

fr
eq
u
en
cy

0.002 0.003 0.004 0.005
time (s)

Malcolm Roberts



fftw++

Histogram of clFFT execution times on a K40:

0

50

100

150

fr
eq
u
en
cy

3.9×10−5 4×10−5

time (s)

Malcolm Roberts



fftw++

We need stats!

I The mean is not a good measure.

I We can’t predict the confidence for the minimum.

I So, we should look at the median time.

I We need statistical tests; look at Mood’s Median test.
I Or the Wilcoxon signed-rank test, etc.

I Applications: publishing papers, self-tuning software
libraries.

Malcolm Roberts



fftw++: sequential tests

5

10

15

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
-v
al
u
e

implicit

implicit

Malcolm Roberts



fftw++: alternating tests

5

10

15

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
-v
al
u
e

implicit

implicit

Malcolm Roberts



fftw++: randomizing tests

5

10

15

ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
-v
al
u
e

implicit

implicit

Malcolm Roberts



fftw++: randomizing tests, different algorithms

5

10

15
ti
m
e/
(N

lo
g
2
N
)
(n
s)

102 103 104 105 106

N

0

0.1

0.2

0.3

0.4

p
-v
al
u
e

implicit

explicit

Malcolm Roberts



fftw++: Comparison of 3D routine

20

30

40

ti
m
e/
(N

3
lo
g
2
N

3
)
(n
s)

102

N

implicit

explicit

Malcolm Roberts



fftw++: conclusion

I Noise can have a large affect on timing algorithms!

I Running algorithms in series gives noisy results.

I Randomizing the algorithm order gives the best results.

I We can (and probably should) use some stats.

Malcolm Roberts



Conclusion

I presented the analysis of two software packages.
schnaps:

I Looked at: roofline, profiling, and benchmarks.

I It’s fast, but comparison is difficult.

I The macrocell interfaces will be faster soon.

fftw++:

I We found a way to deal with noise when timing.

I Now we re-write a bunch of scripts. :(

I But the results look good so far!

Thank you for your attention!
Merci pour votre attention!

Malcolm Roberts


