
rocFFT
An open-source GPU FFT Library for Exascale Systems

Malcolm Roberts, Fei Zheng, and Bragadeesh Natarajan
malcolm.roberts@amd.com

2020-02-14

malcolm.roberts@amd.com


Outline

I ROCm: Radeon Open Compute Platform

I The HIP programming language

I rocFFT
I Design
I Features
I Usage

I Sample applications

2/12



ROCm: Radeon Open Compute

https://rocm.github.io/

I Open source drivers and libraries
I Community engagement encouraged!

I HPC and machine learning applications

I Focus on multi-gpu computation

I Some libraries of interest to the HPC
community:
I rocBLAS
I rocSPARSE: sparse BLAS
I rocALUTION: sparse solvers
I rocFFT

I Written in the HIP programming
language

3/12

https://rocm.github.io/


HIP: Heterogeneous-Computing Interface for Portability

HIP is a C++ dialect for GPU programming.

Sample differences between HIP, CUDA, and OpenCL:

Term HIP CUDA OpenCL
Device kernel __global__ __global__ __kernel

Thread index threadIdx.x threadIdx.x get_local_id(0)

Kernel launch hipLaunchKernelGGL <<< >>> clEnqueueNDRangeKernel

The hipify tool converts CUDA code to HIP code.

OpenCL continues to be supported.

Compiler is a branch of clang, and will be upstreamed.

4/12



rocFFT: An open-source GPU FFT Library for Exascale Systems

github.com/ROCmSoftwarePlatform/rocFFT

I Open source:

I Written in C++ and HIP

I can also be compiled with nvcc

I rocfft interface provides flexibility

I Alternative hipfft interface: usage similar to cufft

5/12

github.com/ROCmSoftwarePlatform/rocFFT


rocFFT: design

rocfft.h provides a C interface.
Based on the input parameters, we create a tree structure:

I Input and output buffers, strides, etc are assigned recursively.

I Leaf nodes contain device kernels.

I A plan is executed by traversing the leaf nodes sequentially.

Most kernels are generated.

Kernel types:

I Stockham

I Transpose

I Bluestein

I Real/complex stages.

The host code is stored in librocfft.so; device kernels are in librocfft-device.so.

6/12



rocFFT: features

I 1D, 2D, and 3D, transforms.

I Batched transforms.

I Single and double precision.

I In-place and out-of-place transforms.

I Input and output strides.

I Complex data format: interleaved or planar (aka “split”).

I Extensive testing on several Linux distributions.

7/12



rocFFT: usage

The rocfft interface is defined in rocfft.h.

1. rocfft_setup()

2. Optional: create a rocfft_plan_description for advanced stride and other format choices.

3. Create a rocfft_plan, possibly using the description above.

4. Create a rocfft_execution_info

4.1 Get the scratch memory requirements of the rocfft_plan

4.2 Allocate the work buffer and associate it to the rocfft_execution_info

5. Allocate the input and output buffers and set up the input data.

6. Execute the plan with rocfft_execute.

7. Free the buffers, destroy the rocFFT structures, and rocfft_cleanup().

8/12



rocFFT: rocfft interface example

// create the plan:

rocfft_plan_create (&plan ,

rocfft_placement_inplace ,

rocfft_transform_type_complex_forward ,

rocfft_precision_double ,

1, // dimension

&length , // transform lengths (column -major)

1, // batch size

NULL); // optional description

// allocate the work memory and associate it to the execution info:

rocfft_execution_info_create (& planinfo);

rocfft_plan_get_work_buffer_size(gpu_plan , &wsize);

hipMalloc (&wbuffer , wsize);

rocfft_execution_info_set_work_buffer(planinfo , wbuffer , wsize);

// execute the plan:

rocfft_execute(gpu_plan , gpu_in , planinfo);

9/12



rocFFT: hipfft interface example

// Create the plan:

hipfftPlan1d (&plan , // plan handle

Nx , // transform lengths

HIPFFT_Z2Z , // transform type (HIPFFT_C2C for float)

1); // number of transforms

// Can also call hipfftPlanMany (row -major)

// Work memory is automatically created and associated with the plan.

// Execute the plan:

hipfftExecZ2Z(plan , x, x, direction);

10/12



Frontier CAAR Projects

Some CAAR (Center for Accelerated Application Readiness) applications which target Frontier
and which use FFTs (www.olcf.ornl.gov/caar/frontier-caar):

I GESTS (GPUs for Extreme-Scale Turbulence Simulations)
High-resolution pseudospectral code: 35 trillion grid points.

I NAMD (Nanoscale Molecular Dynamics)
Molecular simulator; can use rocFFT as the backend.

I PIConGPU (Particle-in-cell on Graphics Processing Units)
Plasma simulator: PIC methods often use FFTs to resolve the underlying Maxwell
equations.

11/12

www.olcf.ornl.gov/caar/frontier-caar


Conclusion

rocFFT is:

I An open-source GPU FFT library from AMD

I Part of ROCm: the Radeon Open Compute Platform

I Uses the HIP programming language

I Will be used by a number of applications for exascale computing.

Available at: github.com/ROCmSoftwarePlatform/rocFFT

12/12

github.com/ROCmSoftwarePlatform/rocFFT

