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Abstract

Spectral reduction was originally formulated entirely in the wavenumber do-
main as a coarse-grained wavenumber convolution in which bins of modes
interact with enhanced coupling coefficients. A Liouville theorem leads to
inviscid equipartition solutions when each bin contains the same number of
modes. A pseudospectral implementation of spectral reduction which en-
joys the efficiency of the fast Fourier transform is described. The model
compares well with full pseudospectral simulations of the two-dimensional
forced-dissipative energy and enstrophy cascades.
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1. Introduction

Turbulence researchers have long sought to reduce the number of degrees
of freedom that must be retained in simulations of turbulent phenomena
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. About ten years ago a novel decimation method
called spectral reduction [11], which accounts for the deleted modes by coarse-
graining the nonlinearity, was developed in collaboration with Prof. Philip
Morrison, to whom we dedicate this paper, on the occasion of his 60th birth-
day.
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Spectral reduction is formulated as a coarse-grained wavenumber convo-
lution over bins of modes that interact with enhanced coupling coefficients.
The approximation possesses many desirable properties: coarse-grained ana-
logues of primitive conservation laws, a Liouville theorem, plausible moment
balance equations that resemble the exact moment balances, and a control
parameter (bin size) that can be varied to increase accuracy incrementally,
until the exact dynamics is recovered. In the case where each bin contains an
identical number of modes, spectral reduction recovers (for mixing dynamics)
the well known inviscid equipartition solutions of spectrally truncated tur-
bulence [12, 13, 14, 15, 16]. In particular, in two dimensions, one obtains an
equipartition of a linear combination of the modal energies and enstrophies
[17], as shown in Fig. 1.

Two serious limitations have prevented spectral reduction from being
adopted for general use. First, if the bins contain different numbers of modes
(a case of practical significance, e.g. for subgrid modelling), the Liouville the-
orem, together with the coarse-grained conservation laws, incorrectly leads to
equipartitions of bin, rather than modal, energies and enstrophies [16]. Sec-
ond, because spectral reduction coarse grains the convolution arising from the
advective nonlinearity, it was originally formulated entirely in the wavenum-
ber domain. This limited its use to situations where the wavenumber re-
duction factor is large enough to offset the inefficiency of spectral methods
relative to their pseudospectral counterparts.

In this work, we report on a recent pseudospectral implementation of
spectral reduction that exploits the efficiency of the fast Fourier transform
(FFT). The resulting implementation of pseudospectral reduction agrees well
with full pseudospectral simulations of the energy and enstrophy cascades of
two-dimensional (2D) forced-dissipative turbulence.

Let us begin by writing in Fourier space the 2D vorticity equation

∂ωk

∂t
+ νkωk =

∑

p,q

ǫkpq
q2

ω∗

pω
∗

q + fk ξ(t), (1)

where νk
.
= νk2 models molecular viscosity, ǫkpq

.
= (ẑ·p×q) δk+p+q,0 is anti-

symmetric under permutation of any two indices, fk is an external stirring
amplitude, and ξ(t) represents a unit Gaussian stochastic white-noise process
(
.
= is used to emphasize a definition). According to a result by Novikov, the
steady-state enstrophy injection rate is given by ǫZ = 1

2

∑

k |fk|
2 [18].

We introduce a uniform coarse-grained grid that partitions the two-dimen-
sional wavenumber domain into bins, each containing the same number r2 of
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Fourier wave vectors (assuming for simplicity that the binning reductions r
in each direction are identical). The bins are labeled by capital letters to dis-
tinguish them from the underlying Fourier wave vectors, which we represent
by lower-case letters. To each bin K on this grid, we associate the coarse-
grained vorticity ΩK

.
= 1

r2

∑

k∈K ωk and assign a characteristic Fourier wave
vector K (whether K refers to a bin or its characteristic wave vector should
always be clear from context).

On introducing the bin averaging operations

〈f〉K
.
=

1

r2

∑

k∈K

fk and 〈f〉K,P ,Q

.
=

1

r6

∑

k∈K

∑

p∈P

∑

q∈Q

f, (2)

we may write the exact evolution equation for ΩK as

∂ΩK

∂t
+ 〈νkωk〉K = r4

∑

P ,Q

〈

ǫkpq
q2

ω∗

pω
∗

q

〉

K,P ,Q

+ 〈fk〉K ξ(t), (3)

Spectral reduction [11] approximates the evolution of ΩK solely in terms
of coarse-grained variables:

∂ΩK

∂t
+ 〈νk〉K ΩK = r4

∑

P ,Q

1

Q2
〈ǫkpq〉K,P ,Q Ω∗

PΩ
∗

Q + FKξ(t), (4)

where FK represents a coarse-grained stirring force. In this work we choose

FK = 2ǫZfK/
√

∑

K |fK |
2 to inject exactly ǫZ units of enstrophy in a steady

state. In the absence of forcing and dissipation, Eq. (4) is readily seen
to conserve the coarse-grained energy 1

2

∑

K K−2 |ΩK |2 ∆K and enstrophy
1
2

∑

K |ΩK |2 ∆K . However, since the δk+p+q,0 factor appearing in the non-
linear coefficient ǫkpq is averaged in Eq. (4) over k, p, and q, the resulting
equation is no longer a convolution. This means that Eq. (4) cannot be
solved directly by the usual pseudospectral method. Nevertheless, in the
case of uniform binning a generalization of the pseudospectral method can
be developed to efficiently implement Eq. (4). To illustrate this, we first
develop in the following section an efficient method for computing coarse-
grained convolutions.

2. One-dimensional coarse-grained convolution

On defining the Nth primitive root of unity, ζN
.
= exp (2πi/N), the one-

dimensional backwards discrete Fourier transform of a complex vector {Fk :
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k = 0, . . . , N − 1} may be written as

F̂j
.
=

N−1
∑

k=0

ζjkN Fk, j = 0, . . . , N − 1.

We recall that the FFT exploits the properties ζrN = ζN/r and ζNN = 1.
Pseudospectral reduction relies on the following construction. On taking

N = rM and frK+ℓ = FK for ℓ = 0, 1, . . . r−1 and K = 0, 1, . . . ,M −1, then
for J = 0, . . . ,M − 1 and s = 0, . . . , r − 1 the backwards Fourier transform

of the coarse-grained data FK is given by

f̂sM+J =
M−1
∑

K=0

r−1
∑

ℓ=0

ζ
(sM+J)(rK+ℓ)
N FK = SJ,sF̂J ,

where

SJ,s
.
=

r−1
∑

ℓ=0

ζJℓN ζsℓr and F̂J
.
=

M−1
∑

K=0

ζJKM FK .

The coarse-grained forwards Fourier transform is given by

FK
.
=

1

Nr

r−1
∑

ℓ=0

frK+ℓ =
1

r2M

r−1
∑

ℓ=0

M−1
∑

J=0

r−1
∑

s=0

ζ
−(rK+ℓ)(sM+J)
N f̂sM+J

=
1

r2M

M−1
∑

J=0

ζ−KJ
M

r−1
∑

s=0

SJ,sf̂sM+J .

The coarse-grained convolution 〈f ∗ g〉K of f and g can then be computed
as

〈f ∗ g〉K
.
=

1

r

r−1
∑

ℓ=0

(f ∗ g)rK+ℓ =
1

r2M

M−1
∑

J=0

ζ−KJ
M

r−1
∑

s=0

SJ,sf̂sM+J ĝsM+J

=
1

r2M

M−1
∑

J=0

ζ−KJ
M WJ F̂JĜJ ,

where WJ
.
=

r−1
∑

s=0

|SJ,s|
2 SJ,s.
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Similarly, the bin-averaged Fourier transform of FK weighted by ℓ is given
by

f̂sM+J =
M−1
∑

K=0

r−1
∑

ℓ=0

ζ
(sM+J)(rK+ℓ)
N ℓFK = TJ,sF̂J ,

where

TJ,s
.
=

r−1
∑

ℓ=0

ℓζJℓN ζsℓr .

For the formulation of pseudospectral reduction in the next section, it will
be convenient to define

W ′

J
.
=

r−1
∑

s=0

|SJ,s|
2 TJ,s.

3. Pseudospectral reduction

Let us now rewrite Eq. (4), on substituting −p for p and −q for q, as

∂ΩK

∂t
+ 〈νkωk〉K = r4

∑

P ,Q

1

Q2
〈δp+q,k(pxqy − pyqx)〉K,P ,Q ΩPΩQ.

Denoting F 0 .
= KxΩK , F 1 .

= KyΩK , F 2 .
= ΩK , G0 .

= KxK
−2ΩK , G1 .

=
KyK

−2ΩK , and G2 .
= K−2ΩK , the nonlinear coupling may then be efficiently

evaluated using 2D bin-averaged FFTs:

∑

P ,Q

1

Q2
〈δp+q,k(pxqy − pyqx)〉K,P ,Q ΩPΩQ

=
1

r2

∑

ℓ

(

[(rKx + ℓx)ΩK ] ∗
[

(rKy + ℓy)K
−2ΩK

])

rK+ℓ

−
1

r2

∑

ℓ

(

[(rKy + ℓy)ΩK ] ∗
[

(rKx + ℓx)K
−2ΩK

])

rK+ℓ

=
1

r4M2

∑

J

ζ−K·J
M

[

r2WJxWJy(F̂
0
JĜ

1
J − F̂ 1

JĜ
0
J)

+rW ′

JxWJy(F̂
2
JĜ

1
J − F̂ 1

JĜ
2
J) + rWJxW

′

Jy(F̂
0
JĜ

2
J − F̂ 2

JĜ
0
J)
]

,

(5)
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noting that the two terms involving ℓxℓy cancel. The term proportional
to r2 represents the usual 2D pseudospectral contribution to the convolution,
which would normally require five 2D Fourier transforms. The two terms
proportional to r require two additional Fourier transforms (to compute F̂ 2

J

and Ĝ2
J), as well as a few extra multiplications and additions. Asymptoti-

cally, the computation time for pseudospectral reduction is thus seen to be
O(N logN), but with a coefficient 7/5 = 1.4 times greater than the scaling
for a conventional pseudospectral method.

4. Hermitian case

In view of the reality condition ω−k = ω∗

k, only the independent modes
(say those in the upper half wavenumber plane) are evolved in an efficient
pseudospectral simulation. For this reason, one would typically restrict the
decimation radix r to be odd, taking the the coarse-grained indexK to corre-
spond to the central wave vector in each bin of a uniform r×r lattice. In each
direction, the fine scale wave vector components can then expressed as k =
rK+ℓ, where ℓ takes on one of the r integral values in [−(r − 1)/2, (r − 1)/2].
In this case one chooses the Hermitian fields F 0 .

= iKxΩK , F 1 .
= iKyΩK ,

F 2 .
= ΩK , G0 .

= −iKxK
−2ΩK , G1 .

= −iKyK
−2ΩK , and G2 .

= −K−2ΩK .
The corresponding spatial weight factors are then real:

SJ,s
.
=

(r−1)/2
∑

ℓ=−(r−1)/2

ζJℓN ζsℓr = 1 + 2Re

(r−1)/2
∑

ℓ=1

ζJℓN ζsℓr ,

TJ,s
.
=

(r−1)/2
∑

ℓ=−(r−1)/2

iℓζJℓN ζsℓr = −2 Im

(r−1)/2
∑

ℓ=1

ℓζJℓN ζsℓr .

Using these definitions, the spatial weight factors W and W ′ appearing in
Eq. (5) can then be constructed. We have recently expanded our efficient
FFTW++ [19, 20] library to include an implicitly dealiased version of the re-
sulting 2D coarse-grained Hermitian convolution.

5. Comparison against full dynamics

Because pseudospectral reduction conserves both energy and enstrophy
and satisfies Liouville’s theorem, with uniform binning one expects inviscid

6



10−1
E
(k
)

101

k

31× 31 bins

πk

α+ βk2

Figure 1: Inviscid equipartition of a 31 × 31 pseudospectrally reduced simulation with
radix r = 3 to the theoretically expected curve πk/(α+βk2), where the constants α and β
are Lagrange multipliers.

equipartition solutions of the form illustrated in Fig. 1. This represents a
nontrivial test of the nonlinear dynamical interactions.

In Fig. 2, we compare the direct cascade predicted by a radix r = 3 pseu-
dospectrally reduced simulation using 85×85 bins with the energy spectrum
for a full 255×255 simulation. Here, the forcing is band-limited to wavenum-
bers in [3.5, 4.5], the injection rate is ǫZ = 1, and νk = 0.0002k2 + 0.15. We
observe that pseudospectral reduction captures the inertial-range and dissipa-
tion dynamics reasonably well, doing much better than the naive decimation
obtained by simply dropping all modes with wavenumber coordinates that
are not multiples of 3.

In Fig. 3, we demonstrate that a radix r = 3 pseudospectrally reduced
simulation with 85 × 85 bins closely approximates the inverse cascade ob-
tained with a full 255 × 255 simulation. Here, the forcing is band-limited
to wavenumbers in [59.5, 60.5], the injection rate is ǫZ = 1, and νk =
1.5× 10−5k2 + 0.03.

We should point out that, in contrast to the situation for conventional
zero-padded Hermitian convolutions, the optimal sizes for implicitly dealiased
Hermitian convolutions are one less than a power of two. The resolutions for
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Figure 2: Comparison of the direct cascades obtained for a pseudospectrally reduced
simulation with 85 × 85 bins, a pseudospectral simulation with 255 × 255 modes, and a
“poor-man’s” decimation using 85× 85 modes and a mode spacing of 3.
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Figure 3: Comparison of the inverse cascades obtained for a pseudospectrally reduced
simulation with 85× 85 bins and a pseudospectral simulation with 255× 255 modes.
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the pseudospectral reduction approximations in Figs. 2 and 3 were chosen to
match the full simulations but are actually suboptimal: a 127 × 127 pseu-
dospectral reduction simulation affords a maximum truncation wavenumber
almost 50% higher but runs only about 14% slower!

6. Conclusions

In this work, one of the two outstanding issues with spectral reduction
is addressed, namely the need for a pseudospectral formulation. Recogniz-
ing that spectral reduction yields correct inviscid equipartition spectra only
with uniform binning and restricting our attention to this case only, an effi-
cient FFT-based implementation, which we call pseudospectral reduction, is
proposed.

Even with uniform binning, we have seen that the resulting energy spec-
trum is much closer to the predictions of the full dynamics than, say, the
spectrum obtained by simply using a smaller spatial domain (larger mode
spacing). This is because spectral reduction incorporates fine-scale geomet-
rical interactions in the form of renormalized nonlinear coupling coefficients.
This distinction suggests that spectral reduction could be used to develop a
reliable dynamic subgrid model. With this in mind, an ongoing project is un-
derway [21] to develop a means of coupling such a pseudospectrally reduced
subgrid model to the larger-scale dynamics of a fully resolved grid.
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