
Adaptive Matrix Transpose Algorithms for

Distributed Multicore Processors

John C. Bowman and Malcolm Roberts

Abstract An adaptive parallel matrix transpose algorithm optimized for distrib-

uted multicore architectures running in a hybrid OpenMP/MPI configuration is pre-

sented. Significant boosts in speed are observed relative to the distributed transpose

used in the state-of-the-art adaptive FFTW library. In some cases, a hybrid config-

uration allows one to reduce communication costs by reducing the number of MPI

nodes, and thereby increasing message sizes. This also allows for a more slab-like

than pencil-like domain decomposition for multidimensional Fast Fourier Trans-

forms, reducing the cost of, or even eliminating the need for, a second distributed

transpose. Nonblocking all-to-all transfers enable user computation and communi-

cation to be overlapped.

1 The matrix transpose

The matrix transpose is an essential primitive of high-performance parallel comput-

ing. In contrast to the situation on serial and shared-memory parallel architectures,

where the use of memory strides in linear algebra and Fast Fourier Transform (FFT)

libraries allows matrices to be accessed in transposed order, many distributed com-

puting algorithms rely on a global matrix transpose. This requires so-called all-to-

all communication, where every process must communicate with all of the other

processes to swap each matrix column with its corresponding row. For example,

multi-dimensional FFT algorithms use a matrix transpose to localize the compu-

tation within individual processes. For efficiency, all data corresponding to a given

John C. Bowman

University of Alberta, Edmonton, Alberta, T6G 2G1 Canada, e-mail: bowman@ualberta.ca

Malcolm Roberts

University of Strasbourg, e-mail: malcolm.i.w.roberts@gmail.com

1



2 John C. Bowman and Malcolm Roberts

direction must be made available locally for processing with the divide-and-conquer

subdivision strategy of the FFT.

Writing an efficient implementation of a matrix transpose is surprisingly difficult.

Even on serial and shared-memory machines there are implementation issues. While

the storage savings afforded by in-place matrix transposition is often desirable, in-

place matrix transposition on a serial machine is nontrivial for nonsquare matrices.

For example, transposing

[

0 1 2 3

4 5 6 7

]

requires that the elements, stored linearly

in memory, be permuted according to the cycles (0), (1,4,2), (3,5,6), and (7).
Algorithms for out-of-place matrix transposition are much simpler. Nevertheless,

efficient implementation of out-of-place transposes still requires detailed knowledge

of the cache size and layout, unless a recursive cache-oblivious algorithm is used [1].

For a review of serial in- and out-of-place matrix transposition algorithms, see [2].

On distributed memory architectures, a number of different matrix transposition

algorithms have been proposed. For instance, Choi et al. [3] identified, in order

of increasing speed, the rotation, direct communication, and binary exchange algo-

rithms. However, the relative performance of these transposition algorithms depends

on many factors, including communication latency, bandwidth, network congestion,

packet size, local cache size, and network topology. Since it is hard to estimate the

relative importance of these factors at compilation time, an adaptive algorithm, dy-

namically tuned to take advantage of these specific architectural details, is desirable.

Al Na’Mneh et al. [4] have previously described an adaptive transposition algorithm

for symmetric multiprocessors that share a common memory pool and exhibit low-

latency interprocess communication. At the other extreme are adaptive algorithms

optimized for distributed memory architectures with high latency communication,

like those implemented in the widely used FFTW library [5].

Modern high-performance computer architectures consist of a hybrid of the

shared and distributed paradigms: distributed networks of multicore processors. The

hybrid paradigm marries the high bandwidth low-latency interprocess communica-

tion featured by shared memory systems with the massive scalability afforded by

distributed computing. In this work, we describe recent efforts to exploit modern

hybrid architectures, using the popular MPI message passing interface to communi-

cate between distributed nodes and the OpenMP multithreading paradigm to com-

municate between the individual cores of each processor.

One of the obvious advantages of exploiting hybrid parallelism is the reduction

in communication relative to the pure-MPI approach since messages no longer have

to be passed between threads sharing a common memory pool. Another advantage

is that some algorithms can be formulated, through a combination of memory strid-

ing and vectorization, so that local transposition is not required within a single MPI

node (e.g. the multi-dimensional FFT1). The hybrid approach also allows smaller

problems to be distributed over a large number of cores. This is particularly advan-

tageous for 3D FFTs: the reduced number of MPI processes allows for a more slab-

like than pencil-like domain decomposition, reducing the cost of, or even eliminat-

1 However, the recent availability of serial cache-oblivious in-place transposition algorithms in

some cases tips the balance in favour of local transposition, if transposed output is acceptable.



Adaptive Matrix Transpose Algorithms for Distributed Multicore Processors 3

ing the need for, a second transpose. A final reason in favour of the hybrid paradigm

is that it is compatible with the modern trend of decreasing memory/core: the num-

ber of cores on recent microchips is growing faster than the total available memory.

This restricts the memory available to individual pure-MPI processes.

Since the multicore nodes in modern hardware are typically connected to the

distributed network via a single socket, message passing typically does not directly

benefit from multithreading. However, we show in this work that message passing

can benefit from the increased communication block lengths associated with the

hybrid model. In addition, the necessary local transposes into and out of the com-

munication buffer can benefit somewhat from multithreading.

The most popular algorithms for transposing an N ×N matrix distributed over P

processes are the direct communication (all-to-all) and recursive binary exchange

(butterfly) algorithms. Direct communication transmits each block of data directly to

its final destination in the matrix transpose, without any intermediate steps. It is most

efficient for P ≪ N, when the message sizes are large. However, its performance

degrades for P ≈ N, when the message size N2/P2 becomes small. To avoid this

degradation, the binary exchange algorithm first groups messages together to reduce

communication latency, by recursively subdividing the transpose into smaller block

transposes.

The FFTW [5] library contains algorithms for both direct communication and bi-

nary exchange. However, the FFTW implementation of an adaptive matrix transpose

has been optimized for distributed memory architectures with high latency commu-

nication. It does not effectively exploit the larger communication block sizes that

are available with hybrid decompositions. It is also not multithreaded.

We have developed an efficient hybrid algorithm in the open-source library

FFTW++ [6]. It uses direct communication when the message sizes are large and

a two-stage block transpose in latency bound cases. In the latter case, we divide

the total number of processes P into a blocks each containing b processes. A block

transpose expresses an N×M matrix as an a×a matrix of N/a×M/a blocks. Here

we only discuss the case where P= ab divides N and M; the general case can be han-

dled with minor technical modifications. The transpose of each N/a×M/a blocks

is computed first, followed by the transpose of the a×a matrix of blocks. Grouping

is used to increase the message sizes in the first transpose from NM/P2 to aNM/P2.

The binary exchange algorithm performs recursive block transposes. In practice,

only one level (at most) of recursion is actually necessary to increase the commu-

nication message sizes. After that single recursion, direct communication typically

becomes optimal since the message sizes have now been multiplied by a factor of a

in the first phase and b in the second phase. We show theoretically in Section 2 that

the communication costs are minimized for a = b =
√

P. In practice, the optimal

value will lie somewhere near this value, but may vary due to other considerations,

such as cache configuration and network topology.

Block transposition is illustrated for the case N = M = 8, a = 4, and b = 2 in

Fig. 1. In (a), the transpose of each 2× 2 block is computed. The communications

between pairs (2n,2n+ 1) of processes are grouped together by first doing an out-

of-place local transpose of the data, considered as a 4× 2 matrix, on each process.



4 John C. Bowman and Malcolm Roberts

(a)

0

1

2

3

4

5

6

7

P
ro
ce
ss

(b)

0

1

2

3

4

5

6

7

P
ro
ce
ss

(c)

0

1

2

3

4

5

6

7

P
ro
ce
ss

(d)

0

1

2

3

4

5

6

7
P
ro
ce
ss

Fig. 1 An 8×8 block transpose over 8 processes for the case a = 4, b = 2.

The pairs of processors then exchange data, as indicated by the arrows. This is fol-

lowed by separate all-to-all communications between the even processes (b) and

odd processes (c), again grouping the data bound for identical processors, to obtain

the transposed matrix in (d).

The block transposition algorithm may be stated as follows:

1. Inner transpose:

a. Locally transpose N/b× b matrix of blocks of M/P elements.

b. All-to-all communicate over teams of b processes, using block size aNM/P2.

2. Outer transpose:

a. Locally transpose N/a× a matrix of blocks of M/P elements.

b. All-to-all communicate over teams of a processes, using block size bNM/P2.

3. Locally transpose N ×M/P matrix (optional).

Step 2 is omitted when a = 1 (the non-latency bound case); the algorithm then re-

duces to direct communication. Step 3 can be omitted if local transposition of the

output data is not required. We designed our algorithm to use nonblocking com-

munications (MPI Ialltoall, available in MPI 3.0), to allow the user to overlap

computation with one or even both communication phases. Overlapping compu-

tation with communication has been observed to yield modest speedups (roughly

10%) for computing 3D implicitly dealiased convolutions [6, 7], where a natural

parallelism between communication and computation arises.



Adaptive Matrix Transpose Algorithms for Distributed Multicore Processors 5

2 Communication costs

Direct transposition of an N×M matrix distributed over P processes, involves P− 1

communications per process, each of size NM/P2, for a total per-process data trans-

fer of (P− 1)NM/P2. For large P, this cost asymptotically approaches NM/P.

For a block transpose, one exploits a factorization P = ab to perform the trans-

form in two stages. First, one groups the processes into a teams of b according to the

quotient of their rank and b. Over each team of b processes, one computes the inner

transpose of the a individual N/a×M/a matrices, grouping all a communications

with the same source and destination together. This requires b− 1 messages per

process, each of size (NM/a)/b2 = aNM/P2, for a total per-process data transfer

of (b− 1)aNM/P2. One then regroups the processes into b teams of a according to

their rank modulo b. Over each team of a processes, the outer transpose of the a×a

matrix of N/a×M/a blocks requires a−1 communications per process, each of size

(NM/b)/a2 = bNM/P2, for a total per-process data transfer of (a− 1)bNM/P2.

Each process performing a block transpose must therefore send (a− 1)+ (b−
1) = a+P/a− 2 messages, for a total per-process transfer of

[(b− 1)a+(a− 1)b]
NM

P2
=

(

2P− a−
P

a

)

NM

P2
.

Let τℓ be the typical latency of a message and τd be the time required to send

each matrix element. The time required to perform a direct transpose is

TD = τℓ (P− 1)+ τd

P− 1

P2
NM = (P− 1)

(

τℓ+ τd

NM

P2

)

,

whereas a block transpose requires

TB(a) = τℓ

(

a+
P

a
− 2

)

+ τd

(

2P− a−
P

a

)

NM

P2
.

Since

TD −TB = τd

(

P+ 1− a−
P

a

)(

L−
NM

P2

)

,

where L = τℓ/τd is the effective communication block length, we see that a direct

transpose is preferred when NM ≥ P2L, while a block transpose should be used

when NM <P2L. To determine the optimal value of a for a block transpose, consider

T ′
B(a) = τℓ

(

1−
P

a2

)

+ τd

(

−1+
P

a2

)

NM

P2
= τd

(

1−
P

a2

)(

L−
NM

P2

)

.

For NM < P2L, we see that TB is convex, with a global minimum value at a =
√

P

of

2τd

(√
P− 1

)

(

L+
NM

P3/2

)

∼ 2τd

√
P

(

L+
NM

P3/2

)

, P ≫ 1.



6 John C. Bowman and Malcolm Roberts

250

300

350

ti
m
e
(µ
s)

1024× 1 512× 2 256× 4 128× 8
nodes × threads

FFTW: 10242

hybrid: 10242

2000

2500

3000

ti
m
e
(µ
s)

1024× 1 512× 2 256× 4 128× 8
nodes × threads

FFTW: 40962

hybrid: 40962

Fig. 2 Wall-clock times for distributed transposes with the FFTW library vs. our implementation.

The global minimum of TB over both a and P is then seen to occur at P ≈
(2NM/L)2/3. If the matrix dimensions satisfy NM > L, as is typically the case, this

minimum occurs above the transition value (NM/L)1/2. For P ≫ 1, we note that

TD ∼ τd(PL+NM/P) has a global minimum of 2τd(NML)1/2 at P = (NM/L)1/2,

precisely at the transition between the two algorithms. Provided NM > L, the op-

timal choice of P is thus (2NM/L)2/3. On a multicore parallel run over S sockets,

with C cores per socket, the optimal number of OpenMPI threads to use is then

T =min(SC/(2NM/L)2/3,C), with P= SC/T MPI nodes. We benchmarked our hy-

brid implementation against the FFTW transpose for 1024×1024 and 4096×4096

complex matrices on the Dell Zeus C8220 Cluster at the Texas Advanced Computer

Center, using S = 128 sockets and C = 8 cores. In Fig. 2, we see that our imple-

mentation typically outperforms FFTW, in some cases by nearly a factor of 2. We

measured the value of L to be roughly 4096 bytes for this machine. This predicts

that the optimal number of threads is T = 8 for Fig. 2 (a) and T = 2 for Fig. 2 (b),

precisely as observed.

Acknowledgements The authors gratefully acknowledge Professor Wendell Horton for providing

access to state-of-the-art computing facilities at the Texas Advanced Computer Center.

References

1. M. Frigo, C.E. Leiserson, H. Prokop, S. Ramachandran, in Foundations of Computer Science,

1999. 40th Annual Symposium on (IEEE, 1999), pp. 285–297

2. M. Dow, Transposing a matrix on a vector computer, Parallel computing 21(12), 1997 (1995)

3. J. Choi, J.J. Dongarra, D.W. Walker, Parallel matrix transpose algorithms on distributed mem-

ory concurrent computers, Parallel Computing 21(9), 1387 (1995)
4. R. Al Na’mneh, W.D. Pan, S.M. Yoo, Efficient adaptive algorithms for transposing small and

large matrices on symmetric multiprocessors, Informatica 17(4), 535 (2006)

5. M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE

93(2), 216 (2005)



Adaptive Matrix Transpose Algorithms for Distributed Multicore Processors 7

6. J.C. Bowman, M. Roberts. FFTW++: A fast Fourier transform C++ header class for the FFTW3

library. http://fftwpp.sourceforge.net (May 6, 2010)

7. J.C. Bowman, M. Roberts, Efficient dealiased convolutions without padding, SIAM J. Sci.

Comput. 33(1), 386 (2011)


