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Helices in MHD Flow:
Numerical Results from Penalized Pseudospectral Simulations

The self-organization of magnetohydrodynamic (MHD) flows is
an important behaviour which can lead to a better understand-
ing of the underlying dynamics, and is important for applica-
tions in engineering and the natural sciences. MHD flows can
be extremely complex and difficult to simulate, which is further
complicated by the fact that many flows of physical interest are
bounded in what may be very complicated domains.
In this talk, I will present some recent results simulations using
the pseudospectral method with boundaries implemented via pe-
nalization. The flow geometry is bounded in a periodic cylinder
with no-slip conditions for the velocity and with the magnetic
field forced by imposing a helical flow at the boundary. I will
show how seemingly minor changes in the cross-sectional ge-
ometry and wrapping number for the helical forcing drastically
changes the flow self-organization.
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Simulation of Self-Organization in MHD Flow
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Governing Equations: MHD

Let u be the velocity of an electric field with magnetic field B.
The velocity changes as

∂u
∂t

= u × ω + j ×B −∇P + ν∇2u

where ω = ∇× u is the vorticity, j = ∇×B is the current
density, P the pressure, and ν is the kinematic viscosity.
The magnetic field changes as

∂B
∂t

= ∇× (u ×B) + λ∇2B

where λ is the magnetic diffusivity.
We require the velocity and magnetic field be solenoidal:

∇ · u = 0 ∇ ·B=0
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Boundary Conditions and Geometry

I The fluid is evolved in a periodic
cylinder denoted Ωf.

I The velocity is no-slip:
I u|∂Ωf

= 0

I The magnetic field is forced
towards a helix:

I B⊥|∂Ωf
= 0

I Bz |∂Ωf
= B0

I Bθ|∂Ωf
= Bc

The wrapping number of the forcing
(the inverse safety factor) is set to
integer values.
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Boundary Conditions and Geometry

We can also impose an elliptical
cross-section, shown here with
eccentricity 1/

√
2.

Using a level-set approach (for
example), very general geometries
may be described.

As in the circular case, wrapping
numbers are integral.
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Initial Conditions and Physical Parameters

Physical parameters:

I ν = 4.5× 10−2

I λ = 4.5× 10−2

I Prandtl number is unity.

Geometrical parameters:

I Major radius is set to 1.

I The length of the cylinder in the z-direction is 8.

Initial conditions:

I The magnetic field matches the boundary conditions.

I The velocity field is perturbed with a random field.

I The perturbation has kinetic energy of order 10−6.

Malcolm Roberts Aix-Marseille University



Numerical Method

The source terms are computed via the pseudospectral
method.

Boundary conditions are imposed via the penalty method.

The system is advanced in time using an Adams-Bashforth
method, with Laplacian terms treated implicitly.
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Pseudospectral Method

Let ûk and B̂k be the Fourier transform of u and B.
The Fourier transform of the governing equations are

∂ûk
∂t

= F (u × ω) + F (j ×B)− ikP̂k − νk
2ûk ,

with the pressure determined via ∇ · u = 0 ⇐⇒ ik · ûk = 0,
and

∂B̂k
∂t

= ik ×F (u ×B)− λk2B̂k

The nonlinear terms are computed by:

I 2/3-padding the input data

I transforming from Fourier space to physical space

I multiplying the fields

I transforming back into Fourier space.
Malcolm Roberts Aix-Marseille University



Pseudospectral Method

The use of FFTs make the pseudospectral method efficient.

FFTs can only be used when the computational domain Ω is a
periodic box.

Ωs

Ωf

We embed the fluid domain Ωf inside Ω.

The solid domain is Ωs = Ω/Ωf.

We penalize the motion of the fluid in the
solid domain with penalization parameter η.
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Penalty Method

Let χΩs be the characteristic function for Ωs.
The penalized velocity evolution equations is

∂u
∂t

= u × ω + j ×B −∇P + ν∇2u−χΩs

η
u,

corresponding to homogeneous Dirichlet boundary conditions.
The penalized evolution equation for B is

∂B
∂t

= ∇× (u ×B) + λ∇2B−χΩs

η
(B −Bs)

where Bs is the penalization field.
Source terms are projected onto the solenoidal manifold via a
Helmholtz decomposition.
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Penalty Method

Advantages:

I Proof of convergence, O
(√

η
)
.

I Deals with complex geometries.

I Easy to implement.

Disadvantages:

I Only first-order accurate in space.

I Stiff in time: dt ≈ η.

I Theory mostly developed for Dirichlet boundary
conditions.

Current Directions:

I Improving convergence and reducing stiffness.

I Generalizing boundary conditions.
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Determining the Penalty Field

The penalty field Bs should

I match the boundary conditions at ∂Ωf,

I be solenoidal,

I and be as regular as possible.
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Determining the Penalty Field

For circular geometries, we can make use of the fact that, in
cylindrical coordinates,

r̂ ·Bs = 0,

so
(1)Bs = Bc f (r)θ̂ + B0ẑ ,

with f (r) a smooth function that is equal to 1 at the boundary
and goes to zero within the periodic box.

The formulation given in equation (1) is necessarily solenoidal.

Similarly, any Bs corresponding to solid-body motion is
guaranteed to be both smooth and solenoidal.
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Determining the Penalty Field

We can also find such fields in general.
Suppose that we are given boundary conditions vbc on ∂Ωf for
the field v .
Suppose also that ∫

∂Ωf

vbc · n̂ ds = 0,

so that the boundary conditions are consistent with a
solenoidal field v .
We find the penalization field v s in the computational domain
Ω by solving

(2)κ∇2v s−
χ∂Ωf

ητ
(v s − vbc) = 0.
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Determining the Penalty Field

We solve equation (2) using by pseudo-time-stepping and the
pseudospectral method.

The field is made solenoidal by performing a Helmholtz
decomposition on v s after each pseudo-time-step.

Pseudo-time-stepping is stopped when

‖v s − vbc‖∞,∂Ωf
< 0.2×√η,

which implies that the error in the boundary conditions is less
than the expected error from the penalty method.
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Simulations: Circular Cross-Section

Simulations were performed on ada.idris.fr and
turing.idris.fr.

I For low forcing amplitudes, the axial velocity was
negligible.

I Simulations with ‖(B0,Bc) ‖' 15 showed exponential
growth of the axial kinetic energy.

I The axial kinetic energy eventually reached a stable
plateau.

I Increasing wrapping number decreased the axial kinetic
energy growth rate.

I The velocity field self-organized into helical pairs.
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Simulations: Circular Cross-Section
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Kinetic energy as a function of time for different forcing
parameters.
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Simulations: Circular Cross-Section
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Axial velocity for Bc = 7.06, B0 = 4.5, wrapping number 2.
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Simulations: Circular Cross-Section

Axial velocity for Bc = 7.06, B0 = 4.5, wrapping number 2.
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Simulations: Circular Cross-Section
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Axial velocity for Bc = 70.6, B0 = 4.5, wrapping number 20.
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Simulations: Circular Cross-Section

Axial velocity for Bc = 70.6, B0 = 4.5, wrapping number 20.
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Simulations: Circular Cross-Section

Simulations with circular cross sections exhibited:

I Growth of axial kinetic energy for large forcing amplitude.

I Growth was positively correlated with forcing wrapping
number.

I The flow self-organized into a variety of helical modes.

I Large enough energy growth produced a transition to
turbulence.

I Turbulent flows were composed of a high-mode boundary
layer with a low-order helical mode away from the
boundary.

Circular geometries produce helical modes.

By removing symmetries, what happens to the helical modes?
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Simulations: Elliptical Cross-Section

Increasing eccentricity suppressed growth of axial kinetic
energy.

The first instance of self-organization accrued at
‖(B0,Bc) ‖= 60 for our simulations.

The mode azimuthal mode-number was much larger than in
the circular case.
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Simulations: Elliptical Cross-Section
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Axial velocity for Bc = 49.7, B0 = 33.6, wrapping number 1.
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Simulations: Elliptical Cross-Section

Axial velocity for Bc = 49.7, B0 = 33.6, wrapping number 1.
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Simulations: Elliptical Cross-Section

The elliptical geometry

I Suppressed axial kinetic energy growth.

I Also exhibited self-organization into helical modes.

I The resulting helical structures had a larger azimuthal
modenumber.

I Axial velocity tended to be concentrated farther away
from the z-axis than in the circular case.
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Summary: MHD Simulations

For sufficiently strong forcing, the simulations showed:

I The self-organization of the velocity into helical structures

I Low-mode helical structures persisted even when the flow
was turbulent.

I Increasing the eccentricity stabilized the flow.
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Current Work

I Implicitly Dealiased Convolutions
I Uses less memory.
I Faster.

I More general boundary conditions.
I Homogeneous Neumann.
I Non-penetration.
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Implicitly Dealiased Convolutions

Evaluation of the nonlinear source term is the most expensive
part of the pseudospectral method.

It is made more expensive by having to extend the input data
from length N to 3

2
N , in each dimension.

For 3D simulations, FFTs are of size(
3

2
N

)3

=
27

8
N3=3.375N3.
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Implicitly Dealiased Convolutions

One can instead implicitly zero-pad the FFT.

The output is partly in-place, and partly in a discontiguous
work array of size N/2.

Implicitly zero-padded FFTs allow one to re-use work memory.

Joint work with John C. Bowman, University of Alberta.

Malcolm Roberts Aix-Marseille University



Implicitly Dealiased Convolutions
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Implicitly Dealiased Convolutions

F G
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Implicitly Dealiased Convolutions

FFT−1
x {F}

nx even

FFT−1
x {F}

nx odd

FFT−1
x {G}

nx even

FFT−1
x {G}

nx odd
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Implicitly Dealiased Convolutions
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Implicitly Dealiased Convolutions
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Implicitly Dealiased Convolutions
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Implicitly Dealiased Convolutions

FFT−1
x {F ∗G}
nx even

FFT−1
x {F ∗G}
nx odd
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Implicitly Dealiased Convolutions

F ∗G
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Implicitly Dealiased Convolutions

Benefits:

I Decreased memory use: 3
2
N3 per input instead of 27

8
N3.

I Increased speed: approximately twice as fast.

I Computational complexity reduced by skipping transforms
of zeroed input.

I Fully multi-threaded using OpenMP.

I Available at fftwpp.sf.net, LGPL.

Current Work:

I Use function-pointers to allow arbitrary binary operations.

I Implementation of MPI routines.

I Modification of data format to work with real-complex
FFTs.
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General Boundary Conditions via Penalization

We specify the fluid domain via a level-set function:

φ : Rn→R

with
Ωf = {x : φ(x) < 0}

and
Ωs = {x : φ(x) > 0}.

The level-set function φ is a distance function from the
boundary.
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General Boundary Conditions via Penalization

The penalty method imposed boundary conditions modifying a
PDE

∂v
∂t

= S

and adding a penalty term:

∂v
∂t

= S−χΩf

η
(v − v s)

where v s is the penalty field.
This can be modified to penalize only the normal component
to zero by evolving

∂v
∂t

= S−n̂
χΩf

η
(n̂ · v).
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General Boundary Conditions via Penalization

The boundary ∂Ωf is defined by

∂Ωf = {x : φ(x) = 0}.

The normal to the surface ∂Ωf is easily computed:

n̂ =
∇φ

‖∇φ‖ .

Thus, desirable properties of φ include:

I Monotonic with respect to signed distance from the
boundary.

I Continuously differentiable.

I Gradient should be well-behaved.

I φ should give us a useful distance from the boundary.
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General Boundary Conditions via Penalization

Consider the level-set function

φ(x , y) = x2 + 2y 2 − 22,

which defines an elliptical region.

The derivative is easy to define in R2.

In a periodic box, things are not so straight-forward.
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General Boundary Conditions via Penalization

0.0

+1.0

+2.0

Direction and magnitude of ∇φ.
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General Boundary Conditions via Penalization

Let A = |minφ|, and consider

f =
φ

φ + 2A

Then,

I φ = 0 ⇐⇒ f = 0

I f : Rn → [−1, 1]

I ‖∇f ‖ is largest near the boundary.

I f = 1 corresponds to |x | → ∞.
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General Boundary Conditions via Penalization
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Direction and magnitude of ∇f .
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General Boundary Conditions via Penalization

We can also stretch the spatial coordinates in the wall domain:

0.0
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Direction and magnitude of ∇f , stretched.
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Neumann Boundary Conditions via Penalization

By considering v component-by-component, we can also
impose Neumann boundary conditions:
Consider the evolution equation

∂θ

∂t
= Sθ

Let v = ∇θ. The evolution equation for v is

∂v
∂t

= ∇Sθ

We can penalize the normal component of v :

∂v
∂t

= ∇Sθ−n̂
χΩf

η
(n̂ ·V ′s)
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Neumann Boundary Conditions via Penalization

Imposing the normal component of v corresponds to
homogeneous Neumann boundary conditions on θ:

∂θ

∂t
= Sθ−∇−1n̂

χΩf

η
(n̂ · v)

For pseudospectral simulations, we can invert the gradient
operator with relative ease:

∂F [θ] (k)

∂t
= F [Sθ] (k)− ik

(ik)2 · n̂F
[
χΩf

η
(n̂ · v)

]
.

Non-penetration of u and ω (or B and j) can be implemented
via a combination of homogeneous Dirichlet and Neumann
boundary conditions.
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Conclusions

The goal of this work is the simulation of complex MHD flows.
The fluid was confined to a periodic cylinder and the magnetic
field helically forced at the boundary.

I The velocity self-organized into helices for sufficiently
strong forcing amplitude.

I These helical modes survived even in turbulent regimes.

I Changing the cross-section of the cylinder dramatically
changed the flow structure.

Current work:

I Implicitly dealiased convolutions.

I Non-penetration boundary conditions.

Merci pour votre attention!
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