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- Shell models have the basic form of the spectral Navier—
Stokes equations, but are
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Shell models of turbulence are one-dimensional models de-

signed to mimic the Navier—Stokes equations. The two main
models are the DN model,
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and the GOY model,
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plus a forcing term and a dissipative term with viscous
coeflicient v.

e one-dimensional,
e set 1n Fourier space, with £, = A",
e and local in wave-number space.

Despite these great differences, they are able to recreate
statistical properties of physical turbulence with surprising
accuracy. Moreover, the wavenumbers are spaced geo-
metrically, allowing us to simulate systems with Reynolds
numbers far beyond what would be otherwise feasible.

In this poster, we take the limit as the wave-number
spacing A goes to 1, while keeping u constant. Replacing
the discrete index n with the continuous variable 7, and
making the approximation
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The nonlinearity scales as log A, which we correct for.

This maps both the DN and GOY model to the dynami-
cal system

Una1 — u(n) £log (A) ==+ Olog(\)?)
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Here, C' = b — a for the DN model, and C' = 2a + 3 for the

GOY model.
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Real-valued turbulence:

e has only viscous corrections to structure functions,

e inviscid, unforced systems do not maximize entropy.

Complex-valued shell turbulence:

e has stronger corrections due to intermaittency,

e inviscid, unforced systems maximize entropy (are ergodic).

These intermittent corrections to the structure tunctions are
not well understood. The correlation between intermittent
corrections and ergodicity may indicate a connection.
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Consider the real-valued shell model:

e As A — 1, the computed system approaches the steady-state
solution of Equation (2).

e T'he velocity u reaches zero at the dissipation scale

oor v <1, kg~ v 1, as per Kolmogorov.
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| models have moments analogous to higher order statis-

tical moments of Navier—Stokes turbulence:
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e Kolmogorov theory predicts: S, ~ kp/3,

e The steady-state solution of Equation (2) yields

which reduces to Kolmogorov theory when v < 1.

where € 1s the energy infection rate.

The similarity between this and our viscous correc-
tions to shell-model structure functions may indicate that

Ot
to

The finite-viscosity third-order structure function for 3D tur-
bulence 1s

vital part of turbulence research.

ructure functions S, = (u”).
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her such corrections exist for 3D turbulence, allowing us
end out poster on a note of optimism which is, as ever, a



