
Schematic Diagram of a 2D Implicitly Zero-Padded n-ary Convolution Routine

By using implicitly padded FFTs [2] and performing sub-transforms one at a time, implicitly padded convolutions can re-use work arrays.
The convolution of the input arrays {F 1}, . . . , {F n} is computed as follows:
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Conclusion

Implicit padding offers several advantages when calculating multidi-
mensional convolutions:

• implicit padding requires much less memory as compared to explicit
padding,

• and the computational complexity of pruned transforms,

•while being faster than explicitly padded convolutions due to de-
creased memory bandwidth.

Implicit padding routines are available in the open-source software
library FFTW++, which is available at fftwpp.sourceforge.net,
with libraries available for non-centered binary convolutions in one,
two, and three dimensions; centered Hermitian-symmetric binary con-
volutions in one, two, and three dimensions; and centered Hermitian
ternary convolutions in one and two dimensions, with more cases to
come.
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Comparison of Dealiasing Techniques

Implicitly zero-padded convolutions [2] skip or prune Fourier trans-
forms which would have been performed on data which is known a
priori to be zero. This is also possible with conventional explicitly
padded convolutions, but is often slower in practice.

Implicit zero-padding offers a significant memory savings as compared
with conventional zero padding d-dimensional convolutions:
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Implicit zero-padding requires less memory and is less computation-
ally complex, and can, in practice, be performed in approximately half
the time of pruned explicitly padded convolutions due to decreased
memory bandwidth use.

Pseudospectral Simulations

The Navier–Stokes equations feature a quadratic nonlinear term which
becomes a convolution in Fourier space.
In a system with m modes, the convolution has O(m2) terms, which
would be quite expensive to calculate directly. To avoid this cost, one
makes use of the convolution theorem and fast Fourier transforms to
perform the calculation in only O(m logm) operations.

Dealiasing convolutions

Given the centered input vectors Fk and Gk, k = −m+ 1, . . . ,m−1,
we require the linear convolution
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The FFT-based convolution treats all indices as modular, producing
a cyclic convolution. The difference between the cyclic and linear
convolution are called aliasing errors. These are removed by zero-
padding the input arrays to length 3m.

Higher-order convolutions

Compressible systems can result in ternary convolutions, and higher-
order convolutions arise in other areas as well [1].
The n-ary convolution of the input vectors {F i
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Zero-padding such a convolution requires extending the input vectors
to length (n + 1)m in each dimension.

An n-ary Convolution 6= n− 1 Binary Convolutions

Consider the ternary convolution {∗(F 1, F 2, F 3)k}m−1
k=−m+1.
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Thus, for fixed-length data,

∗(F 1, F 2, F 3) 6=
(
F 1 ∗ F 2

)
∗ F 3.
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